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Comprehensive Internet E-Mail Security
by William Stallings, Independent Consultant 

F or both organizations and individuals, e-mail is pervasive and 
vulnerable to a wide range of security threats. In general terms, 
e-mail security threats can be classified as follows:

• Authenticity-related threats: Could result in unauthorized access 
to an enterprise’s e-mail system. Another threat in this category is 
deception, in which the purported author isn’t the actual author.

• Integrity-related threats: Could result in unauthorized modifica-
tion of e-mail content.

• Confidentiality-related threats: Could result in unauthorized dis-
closure of sensitive information.

• Availability-related threats: Could prevent end users from being 
able to send or receive e-mail messages. 

To assist in addressing these threat categories, the National Institute 
of Standards and Technology (NIST) has issued SP 800-177[1], which 
recommends guidelines for enhancing trust in e-mail. The document 
is both a survey of available standardized protocols and a set of rec-
ommendations for using these protocols to counter security threats 
to e-mail usage.

For an understanding of the topics in this article, it is useful to have 
a basic grasp of the Internet mail architecture, which is currently 
defined in RFC 5598[2]. The discussion now provides an overview of 
the basic concepts.

At its most fundamental level, the Internet mail architecture consists 
of a user world in the form of Message User Agents (MUA), and the 
transfer world, in the form of the Message Handling Service (MHS), 
which is composed of Message Transfer Agents (MTA). The MHS 
accepts a message from one user and delivers it to one or more other 
users, creating a virtual MUA-to-MUA exchange environment. This 
architecture involves three types of interoperability. One is directly 
between users: messages must be formatted by the MUA on behalf 
of the message author so that the message can be displayed to the 
message recipient by the destination MUA. There are also interop-
erability requirements between the MUA and the MHS—first when 
a message is posted from an MUA to the MHS and later when it is 
delivered from the MHS to the destination MUA. Interoperability 
is required among the MTA components along the transfer path 
through the MHS.
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Figure 1 illustrates the key components of the Internet mail architec-
ture, which include the following:

• Message User Agent (MUA): Operates on behalf of user actors and 
user applications. It is their representative within the e-mail ser-
vice. Typically, this function is housed in the user’s computer and 
is referred to as a client e-mail program or a local network e-mail 
server. The author MUA formats a message and performs initial 
submission into the MHS via a Mail Submission Agent (MSA). The 
recipient MUA processes received mail for storage and/or display 
to the recipient user.

• Mail Submission Agent (MSA): Accepts the message submitted by 
an MUA and enforces the policies of the hosting domain and the 
requirements of Internet standards. This function may be located 
together with the MUA or as a separate functional model. In the 
latter case, the Simple Mail Transfer Protocol (SMTP) is used 
between the MUA and the MSA.

• Message Transfer Agent (MTA): Relays mail for one application-
level hop. It is like a packet switch or IP router in that its job 
is to make routing assessments and move the message closer to 
the recipients. Relaying is performed by a sequence of MTAs until 
the message reaches a destination MDA. An MTA also adds trace 
information to the message header. SMTP is used between MTAs 
and between an MTA and an MSA or MDA.



The Internet Protocol Journal
4

• Mail Delivery Agent (MDA): The MDA is responsible for transfer-
ring the message from the MHS to the Message Store (MS).

• Message Store (MS): An MUA can employ a long-term MS. An MS 
can be located on a remote server or on the same machine as the 
MUA. Typically, an MUA retrieves messages from a remote server 
using the Post Office Protocol (POP) or the Internet Message 
Access Protocol (IMAP).

As will be seen subsequently, an important element in securing e-mail 
is the use of public-key cryptography. In turn, the use of public-
key cryptography depends on the use of Public-key Certificates. In 
essence, a public-key certificate consists of a public key plus a user ID 
of the key owner, with the whole block signed by a trusted third party. 
A common scheme for the creation and use of public key certificates 
is by means of a third party known as a Certificate Authority (CA). 
A CA is an entity that is trusted by the user community, such as a  
government agency or a financial institution. The essential elements 
in the CA scheme include:

1.  Client software creates a pair of keys, one public and one private. 
The client prepares an unsigned certificate that includes a user ID 
and the user’s public key. The client then sends the unsigned certifi-
cate to a CA in a secure manner.

2. A CA creates a signature by calculating the hash code of the 
unsigned certificate and encrypting the hash code with the CA’s pri-
vate key; the encrypted hash code is the signature. The CA attaches 
the signature to the unsigned certificate and returns the now-signed 
certificate to the client.

3.  The client may send its signed certificate to any other user. That 
user may verify that the certificate is valid by calculating the hash 
code of the certificate (not including the signature), decrypting the 
signature using the CA’s public key, and comparing the hash code 
to the decrypted signature.

If all users subscribe to the same CA, then there is a common trust of 
that CA. All user certificates can be placed in the directory for access 
by all users. In addition, users can transmit their certificate directly to 
other users. In either case, when B is in possession of A’s certificate, 
B has confidence that messages it encrypts with A’s public key will be 
secure from eavesdropping and that messages signed with A’s private 
key are unforgeable.

If there is a large community of users, it may not be practical for all 
users to subscribe to the same CA. Because it is the CA that signs 
certificates, each participating user must have a copy of the CA’s own 
public key to verify signatures. This public key must be provided 
to each user in an absolutely secure (with respect to integrity and 
authenticity) way so that the user has confidence in the associated 
certificates. 

Internet E-Mail Security continued
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Thus, with many users it may be more practical for there to be 
numerous CAs, each of which securely provides its public key to 
some fraction of the users. In practice, there is not a single CA but 
rather a hierarchy of CAs. This setup complicates the problems of 
key distribution and trust, but the basic principles are the same.

Several issues with the use of CAs should be mentioned. As can be 
deduced from the preceding paragraph, a hierarchical CA system can 
become cumbersome and not scale well. Nevertheless, this scheme is 
still the preferred one, and it is recommended by SP 800-177. A sepa-
rate issue is one of security. The global CA ecosystem has become 
subject to attack in recent years, and has been successfully compro-
mised more than once. One way to protect against CA compromises 
is to use the Domain Name System (DNS) to allow domains to specify 
their intended certificates or vendor CAs. Such uses of DNS require 
that the DNS itself be secured with Domain Name System Security 
Extensions (DNSSEC) as described subsequently.

For the reader who needs an introduction or refresher on concepts 
of public-key cryptography, authentication, and digital signatures, 
a Crypto Portal white paper[3] provides a quick and easy overview.  
A useful overview of CA and public-key certificate concepts is NIST 
SP 800-32[4].

Trustworthy E-Mail
The following protocols and standards are described in and recom-
mended by SP 800-177:

• STARTTLS: An SMTP security extension that enables an SMTP 
client and server to negotiate the use of Transport Layer Security 
(TLS) to provide private, authenticated communication across the 
Internet.

• Secure Multipurpose Internet Mail Extensions (S/MIME): Provides 
authentication, integrity, nonrepudiation (via digital signatures) 
and confidentiality (via encryption) of the message body carried in 
SMTP messages.

• DNS-Based Authentication of Named Entities (DANE): Designed 
to overcome problems in the Certificate Authority (CA) system by 
providing an alternative channel for authenticating public keys 
based on DNSSEC, with the result that the same trust relationships 
used to certify IP addresses are used to certify servers operating on 
those addresses.

• Sender Policy Framework (SPF): Enables a domain owner to spec-
ify the IP addresses of MTAs that are authorized to send mail on its 
behalf. SPF uses the DNS to allow domain owners to create records 
that associate the domain name with a specific IP address range of 
authorized MTAs. It is a simple matter for receivers to check the 
SPF text record (TXT) in the DNS to confirm that the purported 
sender of a message is permitted to use that source address and 
reject mail that does not come from an authorized IP address.
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• DomainKeys Identified Mail (DKIM): Enables e-mail actors 
(authors or operators) to affix their domain name to the message 
reliably, using cryptographic techniques, so that filtering engines 
can develop an accurate reputation for the domain. The MTA can 
sign selected headers and the body of a message. This signature 
validates the source domain of the mail and provides message body 
integrity.

• Domain-based Message Authentication, Reporting, and Confor-
mance (DMARC): Publishes a requirement for the author domain 
name to be authenticated by DKIM and/or SPF, for that domain’s 
owner to request recipient handling of nonauthenticated mail using 
that domain, and for a reporting mechanism to send reports from 
recipients back to domain owners. DMARC lets senders know the 
proportionate effectiveness of their SPF and DKIM policies, and 
signals to receivers what action should be taken in various indi-
vidual and bulk attack scenarios.

Figure 2 shows how these components interact to provide mes-
sage authenticity and integrity. Not shown, for simplicity, is that  
S/MIME also provides message confidentiality by encrypting mes-
sages. Together, these protocols provide a comprehensive Internet 
e-mail security strategy. This article provides an overview of each.

STARTTLS
A significant security-related extension for SMTP is STARTTLS, 
defined in RFC 3207[5]. STARTTLS enables the addition of confi-
dentiality and authentication in the exchange between SMTP agents. 
This addition enables SMTP agents to protect some or all of their 
communications from eavesdroppers and attackers by invoking a 
Transport Layer Security (TLS) session within the SMTP connection. 
STARTTLS has been widely deployed, and is supported by Amazon, 
Facebook, Google, Microsoft, Yahoo, and others[6]. A 2014 study 
by Facebook, which sends several billions of e-mails daily, found 
that 76% of host names that receive Facebook e-mails support 
STARTTLS[7].

TLS is a security layer implemented just above TCP. TLS is an Internet 
Standard that replaces Secure Sockets Layer (SSL) with essentially 
the same functionality[8]. With TLS in place, an application has a TLS 
socket address and communicates to the TLS socket address at the 
remote application. These addresses are distinct from those used by 
the same application running directly over TCP. The security func-
tions provided by TLS are transparent to the application and also to 
TCP. Thus, neither TCP nor the application needs to be modified to 
invoke the security features of SSL. TLS provides three categories of 
security, confidentiality, and authentication. 

If the client does initiate the connection over a TLS-enabled port, the 
server may prompt with a message indicating that the STARTTLS 
option is available. 

Internet E-Mail Security continued
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Figure 2: The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and S/MIME for Assuring Message Authenticity 
and Integrity
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The client can then issue the STARTTLS command in the SMTP com-
mand stream, and the two parties proceed to establish a secure TLS 
connection. Many e-mail providers and servers now have STARTTLS 
enabled[9, 10], including Amazon, Comcast, Dropbox, Facebook, 
Google, Microsoft, and Yahoo.

As described in SP 800-177, STARTTLS may be vulnerable to a Man-
In-The-Middle (MITM) attack when it is initiated as a request by the 
server. In this case, the MITM receives the STARTTLS request from 
the server reply to a connection request, and scrubs it out. 
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The initiating client sees no TLS upgrade request and proceeds with 
an unsecured connection. However, SP 800-177 takes the position 
that some security is better than no security and that until TLS is 
available everywhere and automatically invoked, TLS-capable serv-
ers must prompt clients to invoke the STARTTLS command. TLS 
clients should attempt to either use STARTTLS initially or issue the 
command when requested.

S/MIME
Secure/Multipurpose Internet Mail Extension (S/MIME) is a secu-
rity enhancement to the MIME Internet e-mail format standard[11]. 
S/MIME is a complex capability that is defined in many documents. 
The most important documents relevant to S/MIME include the  
following [12−19]:

• RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies 
conventions for X.509 certificate usage by S/MIME v3.2.

• RFC 5751, S/MIME Version 3.2 Message Specification: The 
principal defining document for S/MIME message creation and 
processing.

• RFC 4134, Examples of S/MIME Messages: Gives examples of 
message bodies formatted using S/MIME.

• RFC 2634, Enhanced Security Services for S/MIME: Describes 
four optional security service extensions for S/MIME.

• RFC 5652, Cryptographic Message Syntax (CMS): Describes CMS. 
This syntax is used to digitally sign, digest, authenticate, or encrypt 
arbitrary message content.

• RFC 3370, CMS Algorithms: Describes the conventions for using 
several cryptographic algorithms with the CMS.

• RFC 5752, Multiple Signatures in CMS: Describes the use of mul-
tiple, parallel signatures for a message.

• RFC 1847, Security Multiparts for MIME—Multipart/Signed and 
Multipart/Encrypted: Defines a framework within which security 
services may be applied to MIME body parts. The use of a digital 
signature is relevant to S/MIME, as explained subsequently.

S/MIME functionality is built into most modern e-mail software and 
interoperates between them. S/MIME provides four message-related 
services: authentication, confidentiality, compression, and e-mail 
compatibility.

Internet E-Mail Security continued
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Authentication is provided by means of a digital signature. Most 
commonly RSA with SHA-256 is used. The sequence is as follows: 

1.  The sender creates a message.

2.  SHA-256 is used to generate a 256-bit message digest of the 
message.

3. The message digest is encrypted with RSA using the sender’s pri-
vate key, and the result is appended to the message. Also appended 
is identifying information for the signer, which will enable the 
receiver to retrieve the signer’s public key.

4.  The receiver uses RSA with the sender’s public key to decrypt and 
recover the message digest.

5. The receiver generates a new message digest for the message and 
compares it with the decrypted hash code. If the two match, the 
message is accepted as authentic.

The combination of SHA-256 and RSA provides an effective digital 
signature scheme. Because of the strength of RSA, the recipient is 
assured that only the possessor of the matching private key could 
have generated the signature. Because of the strength of SHA-256, 
the recipient is assured that no one else could generate a new message 
that matches the hash code and, hence, the signature of the original 
message.

Although signatures normally are found attached to the message or 
file that they sign, it is not always the case: Detached signatures are 
supported. A detached signature may be stored and transmitted sep-
arately from the message it signs. This option is useful in several 
contexts. A user may wish to maintain a separate signature log of 
all messages sent or received. A detached signature of an executable 
program can detect subsequent virus infection. Finally, detached sig-
natures can be used when more than one party must sign a document, 
such as a legal contract. Each person’s signature is independent and is 
therefore applied only to the document. Otherwise, signatures would 
have to be nested, with the second signer signing both the document 
and the first signature, and so on.

S/MIME provides confidentiality by encrypting messages using con-
ventional encryption with a secret key, also known as a symmetric 
key. Most commonly, Advanced Encryption Standard (AES) with a 
128-bit key is used, with the Cipher Block Chaining (CBC) mode. 
The key itself is also encrypted, typically with RSA, as explained 
subsequently.

As always, one must address the problem of key distribution. In  
S/MIME, each symmetric key, referred to as a content-encryption 
key, is used only once. That is, a new key is generated as a random 
number for each new message. Because it is to be used only once, the 
content-encryption key is bound to the message and transmitted with 
it. To protect the key, it is encrypted with the receiver’s public key. 
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The sequence can be described as follows:

1.  The sender generates a message and a random 128-bit number to 
be used as a content-encryption key for this message only.

2.  The message is encrypted using the content-encryption key. 

3. The content-encryption key is encrypted with RSA using the recipi-
ent’s public key and is attached to the message.

4. The receiver uses RSA with its private key to decrypt and recover 
the content-encryption key.

5. The content-encryption key is used to decrypt the message.

As Figure 3 illustrates, both confidentiality and encryption may be 
used for the same message. The figure shows a sequence in which a 
signature is generated for the plaintext message and appended to the 
message. Then the plaintext message and signature are encrypted as 
a single block using symmetric encryption and the symmetric encryp-
tion key is encrypted using public-key encryption. 

S/MIME allows the signing and message encryption operations to 
be performed in either order. If signing is done first, the identity of 
the signer is hidden by the encryption. Plus, it is generally more con-
venient to store a signature with a plaintext version of a message. 
Furthermore, for purposes of third-party verification, if the signature 
is performed first, a third party need not be concerned with the sym-
metric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without 
exposing the message content. This option can be useful in a context 
in which automatic signature verification is desired, as no private-key 
material is required to verify a signature. However, in this case the 
recipient cannot determine any relationship between the signer and 
the unencrypted content of the message.

When S/MIME is used, at least part of the block to be transmitted 
is encrypted. If only the signature service is used, then the message 
digest is encrypted (with the sender’s private key). If the confiden-
tiality service is used, the message plus signature (if present) are 
encrypted (with a one-time symmetric key). Thus, part of or the 
entire resulting block consists of a stream of arbitrary 8-bit octets. 
However, many electronic mail systems only permit the use of blocks 
consisting of ASCII text. To accommodate this restriction and pro-
vide compatibility, S/MIME provides the service of converting the 
raw 8-bit binary stream to a stream of printable ASCII characters, 
a process referred to as 7-bit encoding. The scheme typically used 
for this purpose is Base64 conversion. Each group of three octets of 
binary data is mapped into four ASCII characters.

S/MIME also offers the ability to compress a message. Message 
compression has the benefit of saving space for both e-mail transmis-
sion and file storage. Compression can be applied in any order with 
respect to the signing and message encryption operations.

Internet E-Mail Security continued
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RFC 5751 provides the following guidelines:

• Compression of binary encoded encrypted data is discouraged, 
since it will not yield significant compression. Base64 encrypted 
data could very well benefit, however.

• If a lossy compression algorithm is used with signing, you will need 
to compress first, then sign.

Figure 3: Simplified S/MIME Functional Flow
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SP 800-177 recommends the use of certificate chain authentication 
against a known certificate authority. Further, SP 800-177 indicates 
that users who want more assurance that the public key supplied is 
bound to the sender’s domain may use a work-in-progress DANE- 
S/MIME mechanism[20], in which the certificate and key can be inde-
pendently retrieved from the DNS and authenticated per the DANE 
mechanism described subsequently.

In addition, SP 800-177 notes that MUAs typically use S/MIME  
private keys to decrypt the e-mail message each time it is displayed, 
but leave the message encrypted in the e-mail store. This mode of oper- 
ation is not recommended, as it forces recipients of the encrypted 
e-mail to maintain their private key indefinitely. Instead, the e-mail 
should be decrypted prior to being stored in the mail store. The mail 
store, in turn, should be secured using an appropriate cryptographic 
technique (for example, disk encryption), extending protection to 
both encrypted and unencrypted e-mail.

OpenPGP
Pretty Good Privacy (PGP) was developed by Phil Zimmermann as  
a publicly-available freeware package to enable individuals to 
exchange secure e-mails without the need to rely on any institution. 
Efforts began early on to develop Internet standards for PGP[21], 
culminating in OpenPGP. OpenPGP[22, 23] is a proposed Internet 
Standard for providing authentication and confidentiality for e-mail 
messages. Although it is similar in purpose and functionality to  
S/MIME, OpenPGP uses different message and key formats and a 
different approach to establishing and using certificates. SP 800-177 
cites many difficulties with OpenPGP, including lack of usability, 
scalability issues related to key distribution, and lack of authentica-
tion of key owners. Further discussion can be found in [24] and [25]. 
Accordingly, SP 800-177 recommends the use of only S/MIME and 
deprecates the use of OpenPGP.

DNS and DNSSEC
As background for the following sections, this section briefly reviews 
DNS and DNSSEC. The Domain Name System (DNS) is a direc-
tory lookup service that provides a mapping between the name of a 
host on the Internet and its numerical Internet address. Four elements 
comprise the DNS. The domain name space is a tree-structured name 
space to identify resources on the Internet. The DNS database is a 
collection of resource records organized into a distributed database; 
conceptually, each node and leaf in the name-space tree structure 
names a collection of information (for example, IP address, name 
server for this domain name) that is contained in Resource Records 
[RRs]). Name Servers are server programs that hold information 
about a portion of the domain-name tree structure and the associated 
RRs. Resolvers are programs that extract information from name 
servers in response to client requests. A typical client request is for an 
IP address corresponding to a given domain name.

Internet E-Mail Security continued
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The DNS database is divided into thousands of separately managed  
zones, which are managed by separate administrators. Using this 
database, DNS servers provide a name-to-address directory service 
for network applications that need to locate specific application 
servers.

Domain Name System Security Extensions (DNSSEC)[26] is used by 
several protocols that provide e-mail security. DNSSEC provides 
end-to-end protection through the use of digital signatures that are 
created by responding zone administrators and verified by a recipi-
ent’s resolver software. In particular, DNSSEC avoids the need to 
trust intermediate name servers and resolvers that cache or route the 
DNS records originating from the responding zone administrator 
before they reach the source of the query. DNSSEC consists of a set 
of new resource record types and modifications to the existing DNS 
protocol.

In essence, DNSSEC is designed to protect DNS clients from accept-
ing forged or altered DNS resource records. It protects these clients 
by using digital signatures to provide: (1) data origin authentication 
to ensure that a RR has originated from the correct source; and (2) 
data integrity verification to ensure that the content of a RR has not 
been modified. The DNS zone administrator digitally signs every 
Resource Record set (RRset) in the zone, and publishes this collec-
tion of digital signatures, along with the zone administrator’s public 
key, in the DNS itself.

In DNSSEC, trust in the public key (for signature verification) of the 
source is established not by going to a third party or a chain of third 
parties (as in Public-Key Infrastructure [PKI] chaining), but by start-
ing from a trusted zone (such as the root zone) and establishing the 
chain of trust down to the current source of response through suc-
cessive verifications of the signature of the public key of a child by its 
parent. The public key of the trusted zone is called the trust anchor.

DANE
DNS-Based Authentication of Named Entities (DANE)[27, 28] is a pro-
tocol that provides mechanisms for domains to specify which X.509 
certificates, which are commonly used for Transport Layer Security 
(TLS), should be trusted for the domain. DANE enables certificates 
to be bound to DNS names using DNSSEC. It is proposed in RFC 
6698[29] as a way to authenticate TLS client and server entities with-
out a Certificate Authority (CA).

Briefly, DANE is an alternative mechanism for securely distributing 
information about domain names by using DNS. DANE defines a 
new type of DNS record that enables a domain to sign statements 
specifying which entities are authorized to represent it. Applications 
can use these records either to augment the existing system of CAs or 
to create a new chain of trust, rooted in the DNS.



The Internet Protocol Journal
14

The rationale for DANE is the vulnerability of the use of CAs in 
a global Public-Key Infrastructure (PKI) system. Every browser 
developer and operating system supplier maintains a list of CA root 
certificates as trust anchors. These certificates are called the root cer-
tificates of the software and are stored in its root certificate store. The 
PKI scheme allows a certificate recipient to trace a certificate back to 
the root. So long as the root certificate remains trustworthy and the 
authentication concludes successfully, the client can proceed with the 
connection. However, if any of the hundreds of CAs operating on the 
Internet is compromised, the effects can be widespread. The attacker 
can obtain the private key of the CA, be issued certificates under a 
false name, or introduce new bogus root certificates into a root cer-
tificate store. There is no limitation of scope for the global PKI, and 
a compromise of a single CA damages the integrity of the entire PKI 
system. In addition, some CAs have engaged in poor security prac-
tices. For example, some CAs have issued wildcard certificates that 
allow the holder to issue sub-certificates for any domain or entity, 
anywhere in the world.  

The purpose of DANE is to replace reliance on the security of the 
CA system with reliance on the security provided by DNSSEC. This 
protocol is well expressed in RFC 6698:

“DNS-Based Authentication of Named Entities (DANE) offers the 
option to use the DNSSEC infrastructure to store and sign keys 
and certificates that are used by TLS. DANE is envisioned as a 
preferable basis for binding public keys to DNS names, because 
the entities that vouch for the binding of public key data to DNS 
names are the same entities responsible for managing the DNS 
names in question. While the resulting system still has residual 
security vulnerabilities, it restricts the scope of assertions that can 
be made by any entity, consistent with the naming scope imposed 
by the DNS hierarchy. As a result, DANE embodies the security 
“principle of least privilege” that is lacking in the current public 
CA model.”

DANE defines a new DNS record type, TLSA, which can be used for 
a secure method of authenticating Secure Sockets Layer/Transport 
Layer Security (SSL/TLS) certificates. The TLSA provides for:

• Specifying constraints on which CA can vouch for a certificate, or 
which specific PKI end-entity certificate is valid. 

• Specifying that a service certificate or a CA can be directly authen-
ticated in the DNS itself. 

The TLSA RR enables certificate issue and delivery to be tied to 
a given domain. A server domain owner creates a TLSA resource 
record that identifies the certificate and its public key. When a client 
receives an X.509 certificate in the TLS negotiation, it looks up the 
TLSA RR for that domain and matches the TLSA data against the 
certificate as part of the client’s certificate validation procedure.

Internet E-Mail Security continued
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Figure 4 shows the format of a TLSA RR as it is transmitted to a 
requesting entity. It contains four fields. The Certificate Usage field 
defines four different usage models, to accommodate users who 
require different forms of authentication. The usage models follow:

• PKIX-TA (CA constraint): Specifies which CA should be trusted to 
authenticate the certificate for the service. This usage model limits 
which CA can be used to issue certificates for a given service on a 
host. The server certificate chain must pass PKIX validation that 
terminates with a trusted root certificate stored in the client.

• PKIX-EE (service certificate constraint): Defines which specific 
end-entity service certificate should be trusted for the service. This 
usage model limits which end-entity certificate can be used by a 
given service on a host. The server certificate chain must pass PKIX 
validation that terminates with a trusted root certificate stored in 
the client.

• DANE-TA (trust anchor assertion): Specifies a domain-operated 
CA to be used as a trust anchor. This usage model allows a domain-
name administrator to specify a new trust anchor—for example, if 
the domain issues its own certificates under its own CA that is not 
expected to be in the end users’ collection of trust anchors. The 
server certificate chain is self-issued and does not need to verify 
against a trusted root stored in the client.

• DANE-EE (domain-issued certificate): Specifies a domain-operated  
CA to be used as a trust anchor. This certificate usage allows for 
a domain-name administrator to issue certificates for a domain 
without involving a third-party CA. The server certificate chain is 
self-issued and does not need to verify against a trusted root stored 
in the client.

Figure 4: TSLA RR  
Transmission Format

Certificate Association Data

Certificate Usage

Bit: 0 8 16 24 31

Selector Matching Type

The first two usage models are designed to coexist with and strengthen 
the public CA system. The final two usage models operate without 
the use of public CAs.

The Selector field indicates whether the full certificate or just the 
value of the public key will be matched. The match is made between 
the certificate presented in TLS negotiation and the certificate in 
the TLSA RR. The Matching Type field indicates how the match of 
the certificate is made. The options are exact match, SHA-256 hash 
match, or SHA-512 hash match. The Certificate Association Data is 
the raw certificate data in hex format.
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DANE can be used in conjunction with SMTP over TLS, as pro-
vided by STARTTLS, to more fully secure e-mail delivery. DANE can 
authenticate the certificate of the SMTP submission server that the 
user’s mail client (MUA) communicates with. It can also authenti-
cate the TLS connections between SMTP servers (MTAs). The use of 
DANE with SMTP is documented in RFC 7672[30].

As discussed previously, SMTP can use the STARTTLS extension to 
run SMTP over TLS, so that the entire e-mail message plus SMTP 
envelope are encrypted. This option is used if both sides support 
STARTTLS. Even when TLS is used to provide confidentiality, it is 
vulnerable to attack in the following ways:

• Attackers can strip away the TLS capability advertisement and 
downgrade the connection to not use TLS.

• TLS connections are often unauthenticated (for example, the 
use of self-signed certificates as well as mismatched certificates is 
common).

DANE can address both these vulnerabilities. A domain can use the 
presence of the TLSA RR as an indicator that encryption must be 
performed, thus preventing malicious downgrade. A domain can 
authenticate the certificate used in the TLS connection setup using a 
DNSSEC-signed TLSA RR.

DNSSEC can be used in conjunction with S/MIME to more fully 
secure e-mail delivery, in a manner similar to the DANE functional-
ity. This use is documented in an Internet Draft[21], which proposes a 
new SMIMEA DNS RR. The purpose of the SMIMEA RR is to asso-
ciate certificates with DNS domain names.

S/MIME messages often contain certificates that can assist in authen-
ticating the message sender and can be used in encrypting messages 
sent in reply. This feature requires that the receiving MUA validate 
the certificate associated with the purported sender. SMIMEA RRs 
can provide a secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content 
as the TLSA RR, with the same functionality. The difference is that 
it is geared to the needs of MUAs in dealing with domain names as 
specified in e-mail addresses in the message body, rather than domain 
names specified in the outer SMTP envelope.

Sender Policy Framework
Sender Policy Framework (SPF) is the standardized way for a send-
ing domain to specify a list of MTAs that are authorized to send on 
behalf of the domain. The problem that SPF addresses is the fol-
lowing: with the current e-mail infrastructure, any host can use any 
domain name for each of the various identifiers in the mail header, 
not just the domain name where the host is located. 

Internet E-Mail Security continued
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Two major drawbacks of this freedom follow:

• It is a major obstacle to reducing Unsolicited Bulk E-mail (UBE), 
also known as spam. It makes it difficult for mail handlers to filter 
out e-mails on the basis of known UBE sources.

• Administrative Management Domains (ADMDs) are understand-
ably concerned about the ease with which other entities can use 
their domain names, often with malicious intent.

However, a basic limitation of SPF is that it forces mail to follow 
a specific path and breaks when legitimate mail deviates from this 
path, such as a message that goes through a mailing list.

RFC 7208 defines the SPF[31]. It provides a protocol by which ADMDs 
can authorize hosts to use their domain names in the MAIL FROM 
or HELO identities. (It is worth noting that this domain name is the 
return address for error messages, rather than being required to be 
the same as the author’s address.) Compliant ADMDs publish SPF 
records in the DNS specifying which hosts are permitted to use their 
names, and compliant mail receivers use the published SPF records to 
test the authorization of sending MTAs using a given HELO or MAIL 
FROM identity during a mail transaction.

SPF works by checking a neighboring, upstream client MTA IP 
address against the policy encoded in any SPF record found at the 
sending domain. The sending domain is the domain used in the SMTP 
connection, not the domain indicated in the Author From field in the 
message header as displayed in the MUA. Thus SPF checks can be 
applied before the message content is received from the sender. 

Figure 5 on the following page is an example in which SPF would 
come into play. Assume that the sender’s IP address is 192.168.0.1. 
The message arrives from the MTA with domain mta.example.net. 
The sender uses the envelope MAIL FROM tag of alice@example.org, 
indicating that the message originates in the example.org domain. 
But the message header specifies alice.sender@example.net. 
The receiver uses SPF to query for the SPF RR that corresponds to  
example.org to check if the IP address 192.168.0.1 is listed as a 
valid sender, and then takes appropriate action based on the results 
of checking the RR.

A sending domain needs to identify all the senders for a given domain 
and add that information into the DNS as a separate resource record. 
Next, the sending domain encodes the appropriate policy for each 
sender using the SPF syntax. The encoding is done in a TXT DNS 
resource record as a list of mechanisms and modifiers. Mechanisms 
are used to define an IP address or range of addresses to be matched, 
and modifiers indicate the policy for a given match. The SPF syntax is 
fairly complex and can express complex relationships between send-
ers. For more details, see RFC 7208.
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Figure 5: Example in Which SMTP 
Envelope Header Does Not  

Match Message Header S: 220 foo.com Simple Mail Transfer Service Ready
C: HELO mta.example.net
S: 250 OK
C: MAIL FROM:<alice@example.org>
S: 250 OK
C: RCPT TO:<Jones@foo.com>
S: 250 OK
C: DATA
S: 354 Start mail input; end with <CRLF>.<CRLF>
C: To: bob@foo.com
C: From: alice.sender@example.net
C: Date: Today
C: Subject: Meeting Today
. . .

If SPF is implemented at a receiver, the SPF entity uses the SMTP enve-
lope MAIL FROM: address domain and the IP address of the sender 
to query an SPF TXT RR. The SPF checks can be started before the 
body of the e-mail message is received, possibly resulting in blocking 
the transmission of the e-mail content. Alternatively, the entire mes-
sage can be absorbed and buffered until all the checks are finished. In 
either case, checks must be completed before the mail message is sent 
to the end user’s inbox.

The checking involves the following rules:

1.  If no SPF TXT RR is returned, the default behavior is to accept the 
message.

2.  If the SPF TXT RR has formatting errors, the default behavior is 
to accept the message.

3. Otherwise the mechanisms and modifiers in the RR are used to 
determine disposition of the e-mail message.

With respect to SPF alone, to say in step 1, preceding, that the default 
behavior is to accept the message is correct. However, it should be 
noted that SPF is usually working within a mixture of anti-abuse 
tools and the aggregate filtering engine typically does not accept a 
message based on the results of only one of its tools, such as SPF.

Figure 6 illustrates SPF operation. As of 2016, more than 27% of all 
Internet domains implement SPF[32].

Internet E-Mail Security continued
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Figure 6: Sender Policy Framework Operation
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DKIM
DomainKeys Identified Mail (DKIM) permits a person, role, or orga-
nization that owns the signing domain to claim some responsibility 
for a message by associating the domain with the message[33]. The 
domain can be an author’s organization, an operational relay, or 
one of their agents. DKIM separates the question of the identity of 
the signer of the message from the purported author of the message. 
Assertion of responsibility is validated through a cryptographic sig-
nature and by querying the signer’s domain directly to retrieve the 
appropriate public key.

The qualifier some in the first sentence of the preceding paragraph is 
important. In particular, the text directly “covered” by the signature 
is not vetted for authenticity.

Message recipients (or agents acting in their behalf) can verify 
the signature by querying the signer’s domain directly to retrieve 
the appropriate public key and thereby can confirm that the mes-
sage was attested to by a party in possession of the private key for 
the signing domain. DKIM is an Internet Standard defined in RFC 
6376[34]. DKIM has been widely adopted by a range of e-mail pro-
viders, including corporations, government agencies, Gmail, Yahoo, 
and many Internet Service Providers (ISPs). As of 2016, an estimated 
40% of Internet sites deploy DKIM[35].

An Administrative Unit (AU) is that portion of the path of an e-mail 
message that is under a single administration. DKIM focuses primar-
ily on attackers located outside of the AUs of the claimed originator 
and the recipients, indirectly, by creating a verifiable signature of 
valid mail from the administrative unit. 
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Internet E-Mail Security continued

It is with these external AUs that the trust relationships required for 
authenticated message submission may not exist and do not scale 
adequately to be practical. Conversely, within these AUs, there are 
other mechanisms (such as authenticated message submission) that 
are easier to deploy and more likely to be used than DKIM. External 
bad actors are usually attempting to exploit the “any-to-any” nature 
of e-mail that motivates most recipient MTAs to accept messages 
from anywhere for delivery to their local domain. They may generate 
messages without signatures, with incorrect signatures, or with cor-
rect signatures from domains with little traceability. They may also 
pose as mailing lists, greeting cards, or other agents that legitimately 
send or resend messages on behalf of others.

DKIM is designed to provide an e-mail authentication technique that 
is transparent to the end user. In essence, a user’s e-mail message is 
signed by a private key of the administrative domain from which the 
e-mail originates. The signature covers none, some, or all of the con-
tent of the message and some of the e-mail message headers.

Note that the signature is not validating any of what is signed, as 
digital signatures usually do. Rather, the choice of what to cover is 
meant as a means of gluing the d = domain name to the overall mes-
sage in a way that is difficult to spoof. At the receiving end, the 
Message Delivery Agent can access the corresponding public key via 
a DNS and verify the signature, thus authenticating that the message 
comes from the claimed administrative domain. Thus, DKIM allows 
an enterprise to vouch for an e-mail message sent from a domain it 
does not control. This approach differs from that of S/MIME, which 
uses the originator’s private key to sign the content of the message. 
The motivation for DKIM is based on the following reasoning:

• S/MIME depends on both the sending and receiving users employ-
ing S/MIME. For almost all users, the bulk of incoming mail does 
not use S/MIME, and the bulk of the mail the user wants to send is 
to recipients not using S/MIME.

• S/MIME signs only the message content. Thus, RFC 5322[36]  
header information concerning origin can be compromised.

• DKIM is not implemented in client programs (MUAs) and is there-
fore transparent to the user; the user doesn’t need to take any 
action.

• DKIM can be configured to apply to all mail from cooperating 
domains.

• DKIM allows good senders to prove that they did send a particular 
message and to prevent forgers from forging the DKIM signature.

Figure 7 is a simple example of the operation of DKIM. We begin 
with a message generated by a user and transmitted into the Message 
Handling Service (MHS) to an MSA that is within the user’s admin-
istrative domain. An e-mail message is generated by an e-mail client 
program. 
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Figure 7: Simple Example of  
DKIM Deployment
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The content of the message, plus selected RFC 5322 headers, is 
signed by the e-mail provider using the provider’s private key. The 
signer is associated with a domain, which could be a corporate local 
network, an ISP, or a public e-mail facility such as Gmail. The signed 
message then passes through the Internet via a sequence of MTAs. At 
the destination, the MDA retrieves the public key for the incoming 
signature and verifies the signature before passing the message on to 
the destination e-mail client. The default signing algorithm is RSA 
with SHA-256. RSA with SHA-1 also may be used.

Figure 8 on the following page, from RFC 5585[37], provides a more 
detailed look at the elements of DKIM operation. Basic message pro-
cessing is divided between a signing Administrative Management 
Domain (ADMD) and a verifying ADMD. At its simplest, this pro-
cessing is between the originating ADMD and the delivering ADMD, 
but it can involve other ADMDs in the handling path.

Signing is performed by an authorized module within the signing 
ADMD and uses private information from a Key Store. Within the 
originating ADMD, this signing might be performed by the MUA, 
MSA, or an MTA. Verifying is performed by an authorized module 
within the verifying ADMD. Within a delivering ADMD, verifying 
might be performed by an MTA, MDA, or MUA. The module 
verifies the signature or determines whether a particular signature 
was required. 
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Verifying the signature uses public information from the Key Store. 
If the signature passes, reputation information is used to assess the 
signer and that information is passed to the message filtering system.

Figure 8: DKIM Functional Flow
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If the signature fails or there is no signature using the author’s 
domain, information about signing practices related to the author 
can be retrieved remotely and/or locally, and that information is 
passed to the message filtering system. For example, it the sender (for 
example, Gmail) uses DKIM but no DKIM signature is present, then 
the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an addi-
tional header field, starting with the keyword Dkim-Signature. You 
can view examples from your own incoming mail by using the “View 
Long Headers (or similar wording) option for an incoming message.

Internet E-Mail Security continued
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Before a message is signed, a process known as canonicalization is 
performed on both the header and body of the RFC 5322 message. 
Canonicalization is necessary to deal with the possibility of minor 
changes in the message made en route, including character encoding, 
treatment of trailing white space in message lines, and the “folding” 
and “unfolding” of header lines. The intent of canonicalization is 
to make a minimal transformation of the message (for the purpose 
of signing; the message itself is not changed, so the canonicaliza-
tion must be performed again by the verifier) that will give it its best 
chance of producing the same canonical value at the receiving end. 
DKIM defines two header canonicalization algorithms (“simple” and 
“relaxed”) and two for the body (with the same names). The simple 
algorithm tolerates almost no modification, while the relaxed toler-
ates common modifications.

DMARC
Domain-Based Message Authentication, Reporting, and Conformance 
(DMARC), defined in RFC 7489[38], allows e-mail senders to specify 
policy on how their mail should be handled, the types of reports that 
receivers can send back, and the frequency of those reports.

DMARC works with SPF and DKIM. SPF enables senders to advise 
receivers, via DNS, whether mail purporting to come from the sender 
is valid, and whether it should be delivered, flagged, or discarded. 
However, neither SPF nor DKIM includes a mechanism to tell receiv-
ers if SPF or DKIM is in use, nor do they have a feedback mechanism 
to inform senders of the effectiveness of the anti-spam techniques. 
For example, if a message arrives at a receiver without a DKIM  
signature, DKIM provides no mechanism to allow the receiver to 
learn if the message is authentic but was sent from a sender that 
did not implement DKIM, or if the message is a spoof. In essence, 
DMARC addresses these issues by indicating whether SPF and/or 
DKIM will be used, what a receiver should do when they aren’t, and 
how receivers should report aggregate results for the domain.

DKIM, SPF, and DMARC authenticate various aspects of an individ-
ual message. DKIM authenticates the domain that affixed a signature 
to the message. SPF focuses on the SMTP envelope, defined in RFC 
5321[39]. It can authenticate either the domain that appears in the 
MAIL FROM portion of the SMTP envelope or the HELO domain, or 
both. These domains may be different, and they are typically not  
visible to the end user.

DMARC authentication deals with the From domain in the mes-
sage header, as defined in RFC 5322. This field is used as the central 
identity of the DMARC mechanism because it is a required message 
header field and therefore guaranteed to be present in compliant mes-
sages, and most MUAs represent the RFC 5322 From field as the 
originator of the message and render some or all of this content of 
the header field to end users. The e-mail address in this field is the one 
used by end users to identify the source of the message and therefore 
is a prime target for abuse.
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DMARC requires that the From address match (be aligned with) an 
Authenticated Identifier from DKIM or SPF. In the case of DKIM, 
the match is made between the DKIM signing domain and the From 
domain. In the case of SPF, the match is between the SPF-authenticated 
domain and the From domain.

A mail sender that uses DMARC must also use SPF or DKIM, or 
both. The sender posts a DMARC policy in the DNS that advises 
receivers on how to treat messages that purport to originate from the 
sender’s domain. The policy is in the form of a DNS TXT resource 
record associated with the sender’s domain name. The sender also 
needs to establish e-mail addresses to receive aggregate and forensic 
reports. Because these e-mail addresses are published unencrypted in 
the DNS TXT RR, they are easily discovered, leaving the poster sub-
ject to unsolicited bulk e-mail. Thus, the poster of the DNS TXT RR 
needs to employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is 
encoded in a series of tag=value pairs separated by semicolons. Once 
the DMARC RR is posted, messages from the sender are typically 
processed as follows:

1.  The domain owner constructs an SPF policy and publishes it in 
its DNS database. The domain owner also configures its system 
for DKIM signing. Finally, the domain owner publishes via the 
DNS a DMARC message-handling policy.

2.  The author generates a message and hands the message to the 
domain owner’s designated mail submission service.

3. The submission service passes relevant details to the DKIM sign-
ing module in order to generate a DKIM signature to be applied 
to the message.

4. The submission service relays the now-signed message to its des-
ignated transport service for routing to its intended recipient(s).

A message generated on the sender side may pass through other relays 
but eventually arrives at a receiver’s transport service. The typical 
processing order for DMARC on the receiving side follows:

1.  The receiver performs standard validation tests, such as check-
ing against IP blocklists and domain reputation lists, as well as 
enforcing rate limits from a particular source.

2.  The receiver extracts the RFC 5322 From address from the mes-
sage. This address must be a single, valid address or else the mail 
is refused as an error.

3. The receiver queries for the DMARC DNS record based on 
the sending domain. If none exists, DMARC processing is 
terminated.

4. The receiver performs DKIM signature checks. If more than one 
DKIM signature exists in the message, one must verify.

Internet E-Mail Security continued
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5. The receiver queries for the SPF record of the sending domain 
and performs SPF validation checks.

6. The receiver conducts Identifier Alignment checks between the 
RFC 5321 From and the results of the SPF and DKIM records 
(if present).

7. The results of these steps are passed to the DMARC module along 
with the Author’s domain. The DMARC module attempts to 
retrieve a policy from the DNS for that domain. If none is found, 
the DMARC module determines the organizational domain  
and repeats the attempt to retrieve a policy from the DNS.

8. If a policy is found, it is combined with the Author’s domain and 
the SPF and DKIM results to produce a DMARC policy result  
(a “pass” or “fail”) and can optionally cause one of two kinds of 
reports to be generated.

9. Recipient transport service either delivers the message to the 
recipient inbox or takes other local policy action based on the 
DMARC result.

10. When requested, Recipient transport service collects data from 
the message delivery session to be used in providing feedback.

Figure 9, based on one at DMARC.org, summarizes the sending and 
receiving functional flow.

Figure 9: DMARC Functional Flow
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DMARC reporting provides the senders feedback on their SPF, 
DKIM, Identifier Alignment, and message disposition policies, which 
enables the sender to make these policies more effective. Two types of 
reports are sent: Aggregate Reports and Forensic Reports.

Aggregate Reports are sent by receivers periodically and include 
aggregate figures for successful and unsuccessful message authentica-
tions, including:

• The sender’s DMARC policy for that interval

• The message disposition by the receiver (that is, delivered, quaran-
tined, rejected) 

• SPF result for a given SPF identifier

• DKIM result for a given DKIM identifier

• Whether identifiers are in alignment or not

• Results classified by sender subdomain

• The sending and receiving domain pair

• The policy applied, and whether it is different from the policy 
requested

• The number of successful authentications

• Totals for all messages received

This information enables the sender to identify gaps in e-mail infra-
structure and policy. SP 800-177 recommends that a sending domain 
begin by setting a DMARC policy of p=none, so that the ultimate 
disposition of a message that fails some check is determined by  
the receiver’s local policy. As DMARC aggregate reports are  
collected, the sender will have a quantitatively better assessment of 
the extent to which the sender’s e-mail is authenticated by outside 
receivers, and will be able to set a policy of p=reject, indicating that 
any message that fails the SPF, DKIM, and alignment checks really 
should be rejected. From their own traffic analysis, receivers can 
determine whether a sender’s p=reject policy is sufficiently trust-
worthy to act on.

Internet E-Mail Security continued
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A Forensic Report helps senders refine the component SPF and DKIM 
mechanisms as well as alerting them that their domain is being used 
as part of a phishing/spam campaign. Forensic reports are similar in 
format to aggregation reports, with these changes:

• Receivers include as much of the message and message header as is 
reasonable to allow the domain to investigate the failure. Add an 
Identity-Alignment field, with DKIM and SPF DMARC-method 
fields as appropriate.

• Optionally add a Delivery-Result field. Add DKIM Domain,  
DKIM Identity, and DKIM selector fields, if the message was 
DKIM signed. Optionally also add DKIM Canonical header and 
body fields.

• Add an additional DMARC authentication failure type, for use 
when some authentication mechanisms fail to produce aligned 
identifiers. 

Since its introduction, DMARC has seen rapid acceptance. Thousands 
of companies use it to prevent billions of messages fraudulently 
using their Internet domains from reaching inboxes, thereby protect-
ing their customers and employees from phishing and other abuse. 
Recently, two of the largest mailbox providers in the world—Google 
and Yahoo—have announced that they are extending that protection 
to cover more of their Internet domains[40].

Summary
The IETF has developed a suite of protocols that provide compre-
hensive Internet e-mail security. Many of these protocols have been 
widely deployed, and the entire suite is recommended by NIST.
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Cloudy-Eyed: Complexity and Reality with  
Software-Defined Networks
by Russ White and Shawn Zandi, LinkedIn 

S oftware-Defined Networks (SDN) are promoted as a way to 
eliminate the complexity of distributed control planes, increase 
network responsiveness to specific applications and business 

requirements, and reduce operational and equipment cost. If this 
description sounds like the classic “too good to be true” situation, 
that’s because it might just be. Just like you can’t build a database 
that has ideal consistency, accessibility, and partionability, you can’t 
build a cheap network with optimal routing and minimal control-
plane state. It’s just a reality of the complexity built into the physical 
shape of the universe that everything has a tradeoff—cheap, fast, and 
high quality, choose two.

When we reach the top of the SDN hype cycle, what will our options 
be? Perhaps the best place to start in answering this question is by 
considering why the “big promise” of SDN hasn’t been really suc-
cessful in the real world.

Defining SDN: Then and Now
To really understand the hype and promise of SDNs, it’s important 
to go back to the beginning and consider what the original promise 
really was. There were originally three crucial elements to the SDN 
story.

First, SDNs were supposed to remove the intelligence from distrib-
uted control planes, replacing them with the centralized calculation 
of network paths in a controller. While an individual autonomous 
router has only a localized view of network conditions, a centralized 
controller can gain a more global view. A global view would allow 
the controller to more efficiently manage and direct traffic through 
the network in a way that improves both the efficiency of the network 
and the performance of applications running across the network.

Second, SDNs were supposed to provide a much more granular 
level of control—down to the flow level. This added level of control 
would enable much better policy control in various ways, including 
the discovery and direction of elephant flows, quality of service on a 
per-application/per-user basis, and other options.

Third, SDN would enable the network to be programmable, thereby 
reducing operational costs, enabling a more lean/agile view of the 
network, and allowing applications to interact directly with the 
network.

The definition of SDN has changed over the years, broadening so 
that it now includes just about any network technology that allows 
programmatic access to information about and control over the 
network. 
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An SDN, in more recent terms, seems to include everything from the 
ability of an application to schedule bandwidth (which is a rather 
more complicated problem than it seems) to gaining better telemetry 
data. The centralized controller, flow-based forwarding, and com-
moditization of hardware are still in scope, but they appear to be 
mixed in with a much more limited view of the “core components” 
of the SDN message. Why has the concept of the SDN changed across 
time?

It’s possible to argue that this definitional change is just a matter of 
the marketing departments at a wide array of vendors grabbing hold 
of the term, but there seems to be something deeper here. Perhaps the 
“something deeper” is the original ideals have proven more difficult 
to achieve than were first thought. A short overview of the challenges 
of deploying the original SDN ideal might be useful in understanding 
the historical flow of these changes. Three larger areas are consid-
ered in the following sections: centralizing the calculation of network 
paths, flow-based forwarding, and network programmability.

Centralizing the Calculation of Network Paths
Distributed control planes, such as Intermediate System-to-Inter-
mediate System (IS-IS) and Border Gateway Protocol (BGP), are often  
(rightly) seen as one of the most complex components of a network. 
In fact, entire networks are designed around the operation of these 
routing protocols, including the consideration of topics like: 

• Splitting up failure domains through information hiding

• Managing complex policies through communities, tags, and 
metrics

• Choosing topologies based on fast convergence characteristics

• The interaction of multiple distributed control planes running on 
a single network

Further, in order to support the complex processing and data handling 
of distributed control planes, network devices are typically large, 
expensive devices, with fast processors and large memory pools. In 
particular, as the need for policy-driven path selection (which gener-
ally means choosing a path through the network that is less optimal 
than the shortest path from a metrics perspective, but more optimal 
from a network usage or quality-of-service perspective) increased, 
the processing power and memory requirements of individual rout-
ers ramped up. 

If distributed control planes could be eliminated and replaced by a 
controller (or set of controllers), the complexity of each forwarding 
device could be reduced dramatically, because the jobs of discover-
ing the local topology and calculating the best path per destination 
would be offloaded from the individual boxes, and pushed onto 
the controller. By removing this processing from the routers, small, 
cheap, lightweight forwarding-only devices could be used instead of 
the traditional router. 

SDN Complexity and Reality continued
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Hence the world could move to white-box devices that would be 
available off the shelf and require little configuration.

Complexity, however, is not so easy to slay. The centralized con-
troller approach presents numerous problems that will, most likely, 
forever limit it in scale and scope to something smaller than what 
was originally envisioned, such as two or three controllers providing 
forwarding information for tens of thousands of switches running at 
scale. Some of these problems include the relationship between cen-
tralized computation and reactive control planes, remote reactions 
to local topology and reachability changes, and what can fairly be 
described as the halo effect around software engineering.

Centralized Control and Reactive Forwarding
Distributed control planes, such as IS-IS, are proactive in their 
discovery of topology and reachability. Before the first packet is trans- 
mitted across the network, the routing protocol must discover 
a set of loop-free paths that can reach every destination in the  
network. Since this discovery and calculation process typically involves 
flooding, processing, and managing a lot of information, distributed  
control planes often rely on information hiding through aggregation 
to manage the amount and speed of state being carried in the proto-
col. For instance, in IS-IS intermediate systems in the level 2 flooding 
domain don’t have any information about the topology of the outly-
ing level 1 flooding domains. In a similar way, intermediate systems 
in a level 1 flooding domain know only about the topology within 
the flooding domain and which intermediate systems are connected 
to the level 2 flooding domain.

When the calculation of routes is centralized, there must still be some 
form of information hiding to scale the control plane. Instead of 
aggregation at specific topological points in the network, SDN con-
trol planes most often opt for moving to a reactive control plane, 
meaning the forwarding devices discover reachability information 
only when they receive the first packet in a flow. While this does 
reduce the amount of forwarding state in any particular device, it 
also has many drawbacks.

Specifically, reactive control planes disconnect the apparent state of 
the network from the perspective of any attached device from the 
actual state of the network. From the host’s perspective, the network 
is up, and therefore there is a path to most destinations that begins 
with the first packet in a flow. In a reactive control plane, however, 
there is some amount of lag between the first packet in a flow being 
transmitted and the path actually being available. One objection 
to this observation is that the Domain Name System (DNS) is also 
reactive in much the same way. However, end devices generally par-
ticipate in the DNS system, and hence know the state of their ability 
to forward in terms of name resolution. 
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Further, while it’s always possible for the network to change state in 
the middle of a flow being transmitted, reactive control planes suffer 
from a wider set of causes for these changes. This situation is always 
true, of course, but while proactive control planes treat a discon-
nect between apparent and actual states as an error condition to be 
resolved, reactive control planes treat such a disconnect as a normal 
state of affairs. In a larger sense, disconnects between the actual and 
perceived states of the network are seen by attached devices as net-
work instability; the stronger the disconnect, the more unstable the 
network appears to be. This condition can have an adverse effect on 
applications and host behavior. Local cache timeouts, cache failures, 
and other problems need to be included in the more general topol-
ogy changes and problems common to distributed control planes for 
path failures.

Centralized Control and Fast Reaction to Changes in the Network
Centralized control planes disconnect local state from recalculation 
of the best path. If a local node or link fails, information about the 
state change must be transmitted to a remote device (the controller), 
which must recalculate a new set of paths, and then distribute those 
paths throughout the network. These operations can be made very 
quickly using techniques such as calculating and installing a backup 
route, but there is no simple way for a centralized controller to react 
more quickly, and with less chance of an unanticipated failure mode 
than with a distributed control plane.

The centralized/decentralized decision isn’t necessarily a better- 
versus-worse decision, it’s just a different decision with a distinct set 
of tradeoffs. Each path has its own complexities and problems to 
address; no set of problems seems to be much less complex to solve 
than any other set in this case.

The Halo of Software Development
Distributed control planes, as mentioned previously, are very com-
plex, and they require a lot of configuration to deploy, design, 
troubleshoot, and manage. It seems simpler, in many ways, to just 
replace all the people who do this configuring, troubleshooting, and 
managing, with a small team of coders who can build and maintain a 
controller. The code would be simpler because it’s all “in one place,” 
and can be more customized to fit a particular business environment. 
The reality, however, is far different. 

But a single controller simply won’t do when it comes to scaling out 
a network. Even if you could run a network of thousands of routers 
with a single controller, it goes against every foundational concept 
of solid system design to do so. There must be at least two control-
lers, in topologically diverse locations within the network, to provide 
redundancy in support of overall system resilience. Moving from one 
controller to two inevitably means providing some way to distribute 
reachability and policy information between the controllers. 

SDN Complexity and Reality continued
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Ultimately, then, a distributed control plane must be built to allow 
communication between the controllers.[1] Couldn’t this distribution 
just be some standard distributed database? It could, but there’s a  
difference between distributing a database and distributing the mean-
ing contained in the database. To distribute the meaning, you must 
have an agreed-on format, encoding, and other things. If you examine 
existing distributed routing protocol specifications, you’ll find they 
spend a lot of time describing not only how to carry information, 
but also how to specify what sort of information is being carried, 
and consistent ways to interpret and use that information. To make  
multiple controller configurations successful (especially across  
multiple controller vendors), either it all will need to be rebuilt in 
an inter-controller protocol, or—perhaps simpler—the controllers 
could just use an existing routing protocol. Regardless of the solution 
chosen, the problems involved in a distributed control plane haven’t 
been removed from the network, they’ve just been moved to some-
place else in the network.

Further, the distributed protocols the SDN controller is designed to 
replace are really just other software. The complexity in these pro-
tocols comes from the propensity of engineers to push functionality 
into them to address an ever-expanding array of use cases. As time 
passes and the larger (or perhaps more obvious) use cases are han-
dled, protocol developers chase smaller problems, finally reaching 
into large amounts of code for what is really a set of corner cases. 
But moving the development of the control plane from one place in 
the network to another place in the network isn’t going to solve this 
problem—the process of accretion of new features and an ever-larger 
code base and inter-controller protocol specifications to support an 
ever-increasing set of use cases is going to remain the same.

Flow-Based Forwarding
Standard IP headers contain at least five fields of interest to network 
devices:

• Source IP address

• Source port number

• Destination IP address

• Destination port number

• Protocol number (or identifier)

Some transport protocols also include more information that might 
be of interest, such as the Transmission Control Protocol (TCP) 
socket number, which can indicate a particular application, and 
information about the expected quality of service for this packet (and 
ultimately flow). Much of this information (and more) could be used 
to forward traffic into multiple paths through the network based on 
policy and available bandwidth. However, existing routing protocols 
are designed to provide reachability, and hence forwarding, informa-
tion based on the destination address only. 
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There has long been a desire to forward traffic based on much more 
than the destination address, so that individual applications can be 
independently routed through the network, and information other 
than the destination address can be used to deny access to specific 
network resources. These requirements have led to a string of work 
in the area of accounting for the IP source, at the least, when making 
forwarding decisions.[2] 

Figure 1 provides an example.

Figure 1: Flow-Based Forwarding 
Control Example
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In this example, Host A is sending a large file to Server F, while the 
user at Host B, a small handheld mobile device, is participating 
in a video conference through Server G. Assuming the two server 
addresses are shared among numerous different services, destination-
based addresses cannot be used to differentiate between the large file 
transfer and the video conference. In this case, if the network admin-
istrator knows about the file transfer, the source addresses of A and 
B, along with the source and destination protocol information, can 
be used to differentiate the two traffic streams. This solution would 
allow the file-transfer traffic to be directed along the [C,D,E] link, 
while the video conferencing traffic would be directed along the [C,E] 
link. This traffic separation can be used to allow the video confer-
ence traffic to pass along links that aren’t being heavily used by the 
file transfer.

Flow-based forwarding, however, presents many problems.

First, the amount of control-plane state required to forward every 
flow in a large network individually would be far beyond reasonable. 
The problem is not just the number of flows, but also the flow setup 
rate. To put this idea in real terms, if there are 10,000 hosts such as 
A and B in the illustration, and each attempts to open a different 
website, and each website requires 20 TCP connections, the network 
is required to calculate and install 2,000,000 flows in a matter of  
seconds. Few controllers could handle flow setup rates at this level.[3]

Second, the hardware costs of implementing such a scheme would be 
very high. The amount of flow state required in each device would be 
incredibly large—larger than most commodity hardware can support. 

SDN Complexity and Reality continued
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In addition, the cost of examining the full header on each packet at 
each hop in the network to achieve correct routing would be very high 
as well. The cost includes not only the capital expenditures (CapEx) 
of acquiring hardware that can support full header examination at 
every hop, has the table space to hold per-flow tables across millions 
of flows, and can support the flow setup rate required in a large fab-
ric, but also the operating expenses (OpEx) in terms of power use for 
such devices. Power drives much more of large-scale design than is 
often considered; however small the energy cost per packet to exam-
ine the entire header at each device, it can still add up, over billions 
of packets switched, to significant numbers.

Third, the use cases for such flow-based forwarding, in the real 
world, tend to be rather narrow. Replacing the control plane that 
manages millions of flows through a large-scale data center fabric to 
support custom routing for a few thousand flows at any given time 
doesn’t appear to be a good tradeoff in terms of complexity and net-
work manageability.

Of course, SDNs can operate in a mode where most traffic is for-
warded based on the packet destination, and the small number of 
flows that need special routing are handled by examining the full 
packet header (the five tuples noted previously or deeper), but this 
solution is a compromise with reality, rather than the original ideal of 
SDNs. The concluding section of this article considers the more real-
istic option of compromising with reality, so it is not covered here.

Making the Network Programmable
Finally, SDNs have promised a great deal in terms of network pro-
grammability. The breakdown involves three different areas: dynamic 
provisioning, and dynamic interactions between applications and the 
network. These topics are considered in the sections that follow.

Dynamic Provisioning
If there’s one point virtually every network engineer agrees on, it’s 
that large-scale networks are difficult to provision, monitor, and 
troubleshoot. It would certainly be a boon to network operations, 
particularly in large networks, if there were a single, unified interface 
into every vendor’s platform, and every control-plane implemen-
tation deployed across the network, to facilitate provisioning and 
management. While the idea of a single interface is noble, the reality 
of the market is probably going to intercede—as it has many times 
in the past—because vendors must be able to differentiate themselves 
somehow in order to actually sell hardware, software, and services. 
This reality isn’t an indictment of vendor business models, it’s just 
reality as it exists. There are two ways to express this problem.

First, vendors try to differentiate themselves with new features, archi-
tectures, and ideas their competitors don’t have. New ideas, however, 
require new models that can be used to configure and manage newly 
designed and/or modified hardware and software. 
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If the vendor publishes standardized models for managing these 
things before they are completed, they lose competitive advantage.

Second, vendors tend to be able to command higher returns on ver-
tically integrated solutions that are easy to deploy and manage as a 
unit. Building vertically integrated solutions, however, tends to thrive 
on well-integrated, single-vendor interfaces between the parts. 

Both of these factors place vendors in the position of trying to balance 
openness with profit margins. The market demands openness, but it 
also demands simplicity and innovation, and these goals are some-
times (or even often) contradictory from the vendor’s perspective.

The most likely result of these two factors is that SDN interfaces 
tend to be restricted in their scope and scale to the “lowest common 
denominator” of available features. Some level of configuration and 
trace information might be available through vendor-specific exten-
sions, but not on the “common model.” Models such as OpenFlow 
tend to start with clean implementations, and then tend to fragment 
over time as vendors rush to build product. There is little incentive 
to consider additions to the base work, along with the rework such 
additions would require on a per-vendor basis, over time.

There is tension around automated provisioning from the network 
operator’s side, as well. On the positive side, dynamic provisioning 
does take humans out of the repetitive action loop of quickly provi-
sioning network devices and virtual topologies. Thus the speed and 
accuracy of configuration, provisioning, and fault isolation can be 
improved dramatically; in other words, automation can reduce the 
Mean Time Between Mistakes (MTBM). However, automating pro-
cesses also introduce a level of brittleness into the operational cycle 
that can be undesirable.

Brittleness, in this context, can be seen as a set of systems that react to 
a wide array of situations with a small set of behaviors. Just as there 
can be monocultures in bacteria colonies, there can be monocultures 
in networks. To give a specific example, if every implementation of 
IS-IS in the network reacts the same way to a given situation, then it’s 
possible for a single defect to cause every router in the network to fail 
under a single (though perhaps unusual) set of conditions. 

The same sorts of situations can arise in provisioning or managing a 
network; an event that “slips through the cracks” of the automation 
system, or an attacker who can feel out the perimeters of defense, can 
take an entire system down very quickly. Another term for this situa-
tions is “robust yet fragile”:

At some point, any complex system becomes brittle—robust yet 
fragile is one phrase you can use to describe this condition. A sys-
tem is robust yet fragile when it is able to react resiliently to an 
expected set of circumstances, but an unexpected set of circum-
stances will cause it to fail.[4]

SDN Complexity and Reality continued
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The best ways to counter are to intentionally avoid monocultures 
where possible, and intentionally inject human decision points in 
the process. Reducing repetitive human work is good, but removing 
humans from the entire decision process is bad. This brittleness can 
end up replacing a large number of smaller failures due to human 
error and replace them with large systemic failures.

Application Interaction
Combining dynamic provisioning and dynamic policy results in what 
can be called an Application Programming Interface (API) for the 
network itself. Treating the network as a programmable entity allows 
applications to directly interact with the network as a system. The 
general idea can look something like this:

• An application needs a certain amount of bandwidth with specific 
quality-of-service parameters at a particular time.

• The application uses an interface into a controller to reserve this 
bandwidth, providing the controller with the impacted endpoints, 
etc.

• The controller uses some means to build the right network condi-
tions to accommodate the needs of the application.

Another example might be offloading the processing of packets for 
security reasons into the network. Applications and operating system 
security are becoming more widely deployed as encryption of data 
in motion becomes more common. For instance, LinkedIn currently 
deploys Transport Layer Security (TLS) on all external-facing con-
nections, and is in the midst of deploying TLS across the data center 
fabric among internal applications. This type of encryption reduces 
the usefulness of firewalls as network appliances (or a “bump in the 
wire”) for blocking various types of attacks. The movement towards 
application and operating system security, however, means the host 
must perform all filtering, and must also forward traffic that needs to 
be forwarded to a honeypot or collection point for further processing. 
If the network has a policy interface, however, the host could instruct 
the controller to install policy at any point in the network that makes 
sense to either block or redirect attacker flows. This model would 
take security-related packet processing off the host and place it into 
the network, where specialized hardware can be deployed, and traffic 
can be optimally redirected or dropped more optimally.

The same objections that can be raised for dynamic provisioning can 
be raised for direct interaction between applications and the network, 
such as brittleness. To such interactions can be added the potential 
for feedback loops between various applications and network condi-
tions (the main reason live measurement of network conditions was 
removed from the Enhanced Interior Gateway Protocol [EIGRP], 
soon after its first deployments, and replaced with relatively static 
metrics).
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Summary of Network Programmability
Once a dynamic interface to the network as a network is in place, this 
abstraction can breed complexity beyond what the engineers respon-
sible for maintaining and troubleshooting the network can readily 
understand. This complexity leads to several different problems, such 
as the “magic-button effect,” where no one really knows why “doing 
x” solves a particular problem, but since no one can figure it out  
(and no one has time to figure it out), someone writes a script that 
“pushes the button” every time “x” happens. 

Overall, then, the promise of SDNs in the provisioning space is 
great—but parallel complexities must be managed. At this point, 
there is little sense that our understanding of SDN complexity has 
matured to the point of being able to use the full potential of the 
technology in the provisioning space.

Conclusion: Looking to the Future 
While SDNs aren’t poised to “consume the world” in their original 
form because of issues surrounding centralized controllers, scale, and 
speed, the concepts involved are beginning to be applied to many dif-
ferent problem spaces. A hybrid-mode approach that allows a more 
standard distributed control plane to provide forwarding informa-
tion for the bulk of the traffic based on the destination address, but 
allows overriding forwarding decisions based on other factors for a 
small percentage of the traffic, is gaining traction in data center fab-
rics of all sizes. Programmability is being used in long-haul networks, 
particularly in conjunction with optical transport, to handle custom-
ized forwarding as well. Essentially, the model that’s being adopted 
in the real world is splitting policy from base reachability, leaving 
the base reachability under the control of distributed control planes, 
while moving policy-based forwarding into a controller.

Leaving the the proven scalable distributed control plane in place and 
using SDN to take advantage of the perks such as traffic engineering, 
bandwidth optimizations, intelligent routing, special policies, and 
other uses seems to be the most practical path forward. Network 
operators may find themselves deploying different mixes of SDN-type 
controls and distributed control planes based on application support 
and business strategy, but there’s little doubt that both distributed 
control planes and what will be called SDN—programmability lay-
ered on top of the distributed control plane—will both continue to be 
used into the foreseeable future.

SDN is not a product. Rather, it’s a methodology or tool; not a desti-
nation, goal, or product to sell, or sometimes to market, and should 
not be considered a target to reach but a strategy to perform certain 
tasks depending on real needs and if certain requirements apply.

SDN Complexity and Reality continued
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