
The Hidden Language of
Computer Hardware and Software

Charles Petzold

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Library of Congress Cataloging-in-Publication Data
Petzold, Charles, 1953–

Code / Charles Petzold.
p. cm.

ISBN -- ISBN 0-7356-1131-9 (paperback)
1. Computer programming. 2. Coding theory. I. Title.

QA76.6 .P495 1999
005.7'2 21--dc21 99-040198

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWM 5 4 3 2 1 0

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide.
For further information about international editions, contact your local Microsoft
Corporation office or contact Microsoft Press International directly at fax
(425) 936-7329. Visit our Web site at mspress.microsoft.com. Send comments
to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, MS-DOS, and
Windows are either registered trademarks or trademarks of Microsoft Corpo-
ration in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

Images of Charles Babbage, George Boole, Louis Braille, Herman Hollerith,
Samuel Morse, and John von Neumann appear courtesy of Corbis Images and were
modified for this book by Joel Panchot. The January 1975 cover of Popular
Electronics is reprinted by permission of Ziff-Davis and the Ziff family. All other
illustrations in the book were produced by Joel Panchot.

Unless otherwise noted, the example companies, organizations, products, people,
and events depicted herein are fictitious. No association with any real company,
organization, product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs

978-0-735-69260-2

iii

� Contents �

Preface iv

Chapter One Best Friends 3

Chapter Two Codes and Combinations 9

Chapter Three Braille and Binary Codes 15

Chapter Four Anatomy of a Flashlight 22

Chapter Five Seeing Around Corners 32

Chapter Six Telegraphs and Relays 40

Chapter Seven Our Ten Digits 47

Chapter Eight Alternatives to Ten 54

Chapter Nine Bit by Bit by Bit 69

Chapter Ten Logic and Switches 86

Chapter Eleven Gates (Not Bill) 102

Chapter Twelve A Binary Adding Machine 131

Chapter Thirteen But What About Subtraction? 143

Chapter Fourteen Feedback and Flip-Flops 155

Chapter Fifteen Bytes and Hex 180

Chapter Sixteen An Assemblage of Memory 190

Chapter Seventeen Automation 206

Chapter Eighteen From Abaci to Chips 238

Chapter Nineteen Two Classic Microprocessors 260

Chapter Twenty ASCII and a Cast of Characters 286

Chapter Twenty-One Get on the Bus 301

Chapter Twenty-Two The Operating System 320

Chapter Twenty-Three Fixed Point, Floating Point 335

Chapter Twenty-Four Languages High and Low 349

Chapter Twenty-Five The Graphical Revolution 364

Acknowledgments 383

Index 385

Preface to the
� Paperback Edition �

ode rattled around in my head for about a decade before I started
writing it. As I was contemplating Code and then writing it, and even
after the book was published, people would ask me, “What’s the

book about?”
I was always reluctant to answer this question. I’d mumble something

about “a unique journey through the evolution of the digital technologies
that define the modern age” and hope that would be sufficient.

But finally I had to admit it: “Code is a book about how computers work.”
As I feared, the reactions weren’t favorable. “Oh, I have a book like that,”

some people would say, to which my immediate response was, “No, no, no,
you don’t have a book like this one.” I still think that’s true. Code is not like
other how-computers-work books. It doesn’t have big color illustrations of
disk drives with arrows showing how the data sweeps into the computer.
Code has no drawings of trains carrying a cargo of zeros and ones.
Metaphors and similes are wonderful literary devices but they do nothing
but obscure the beauty of technology.

The other comment I heard was, “People don’t want to know how
computers work.” And this I’m sure is true. I personally happen to enjoy
learning how things work. But I also like to choose which things I learn about
and which I do not. I’d be hard pressed to explain how my refrigerator works,
for example.

Yet I often hear people ask questions that reveal a need to know something
about the inner workings of personal computers. One such common question
is, “What’s the difference between storage and memory?”

That’s certainly a critical question. The marketing of personal computers
is based on such concepts. Even novice users are expected to know how many
megas of the one thing and gigas of the other thing will be necessary for their
particular applications. Novice users are also expected to master the concept
of the computer “file” and to visualize how files are loaded from storage into
memory and saved from memory back to storage.

The storage-and-memory question is usually answered with an analogy:
“Memory is like the surface of your desk and storage is like the filing
cabinet.” That’s not a bad answer as far as it goes. But I find it quite
unsatisfactory. It makes it sound as if computer architecture were patterned
after an office. The truth is that the distinction between memory and storage

C

is an artificial one and exists solely because we don’t have a single storage
medium that is both fast and vast as well as nonvolatile. What we know
today as “von Neumann architecture”—the dominant computer architecture
for over 50 years—is a direct result of this technical deficiency.

Here’s another question that someone once asked me: “Why can’t you run
Macintosh programs under Windows?” My mouth opened to begin an
answer when I realized that it involved many more technical issues than I’m
sure my questioner was prepared to deal with in one sitting.

I want Code to be a book that makes you understand these things, not
in some abstract way, but with a depth that just might even rival that of
electrical engineers and programmers. I also hope that you might recognize
the computer to be one of the crowning achievements of twentieth century
technology and appreciate it as a beautiful thing in itself without metaphors
and similes getting in the way.

Computers are constructed in a hierarchy, from transistors down at the
bottom to the information displayed on our computer screens at the top.
Moving up each level in the hierarchy—which is how Code is structured—
is probably not as hard as most people might think. There is certainly a lot
going on inside the modern computer, but it is a lot of very common and
simple operations.

Although computers today are more complex than the computers of 25
years or 50 years ago, they are still fundamentally the same. That’s what’s
so great about studying the history of technology: The further back in time
you go, the simpler the technologies become. Thus it’s possible to reach a
point where it all makes relatively easy sense.

In Code, I went as far back as I could go. Astonishingly, I found that I
could go back into the nineteenth century and use early telegraph equipment
to show how computers are built. In theory at least, everything in the first
17 chapters of Code can be built entirely using simple electrical devices that
have been around for over a century.

This use of antique technology gives Code a fairly nostalgic feel, I think.
Code is a book that could never be titled The Faster New Faster Thing or
Business @ the Speed of a Digital Nervous System. The “bit” isn’t defined
until page 68; “byte” isn’t defined until page 180. I don’t mention transistors
until page 142, and that’s only in passing.

So, while Code goes fairly deep into the workings of the computer (few
other books show how computer processors actually work, for example),
the pace is fairly relaxed. Despite the depth, I tried to make the trip as
comfortable as possible.

But without little drawings of trains carrying a cargo of zeros and ones.

Charles Petzold
August 16, 2000

code (kod) ...

3.a. A system of signals used to represent letters or numbers in
transmitting messages.

b. A system of symbols, letters, or words given certain
arbitrary meanings, used for transmitting messages
requiring secrecy or brevity.

4. A system of symbols and rules used to represent instructions
to a computer…

— The American Heritage Dictionary of the English Language

3

Chapter One

Best Friends

ou’re 10 years old. Your best friend lives across the street. In fact,
the windows of your bedrooms face each other. Every night, after
your parents have declared bedtime at the usual indecently early

hour, you still need to exchange thoughts, observations, secrets, gossip, jokes,
and dreams. No one can blame you. After all, the impulse to communicate
is one of the most human of traits.

While the lights are still on in your bedrooms, you and your best friend
can wave to each other from the windows and, using broad gestures and
rudimentary body language, convey a thought or two. But sophisticated
transactions seem difficult. And once the parents have decreed “Lights out!”
the situation seems hopeless.

How to communicate? The telephone perhaps? Do you have a telephone
in your room at the age of 10? Even so, wherever the phone is you’ll be
overheard. If your family personal computer is hooked into a phone line, it
might offer soundless help, but again, it’s not in your room.

What you and your best friend do own, however, are flashlights. Everyone
knows that flashlights were invented to let kids read books under the bed
covers; flashlights also seem perfect for the job of communicating after dark.
They’re certainly quiet enough, and the light is highly directional and prob-
ably won’t seep out under the bedroom door to alert your suspicious folks.

Can flashlights be made to speak? It’s certainly worth a try. You learned
how to write letters and words on paper in first grade, so transferring that
knowledge to the flashlight seems reasonable. All you have to do is stand
at your window and draw the letters with light. For an O, you turn on the
flashlight, sweep a circle in the air, and turn off the switch. For an I, you make
a vertical stroke. But, as you discover quickly, this method simply doesn’t
work. As you watch your friend’s flashlight making swoops and lines in the

Y

4 Chapter One

air, you find that it’s too hard to assemble the multiple strokes together in
your head. These swirls and slashes of light are not precise enough.

You once saw a movie in which a couple of sailors signaled to each other
across the sea with blinking lights. In another movie, a spy wiggled a mir-
ror to reflect the sunlight into a room where another spy lay captive. Maybe
that’s the solution. So you first devise a simple technique. Each letter of the
alphabet corresponds to a series of flashlight blinks. An A is 1 blink, a B is
2 blinks, a C is 3 blinks, and so on to 26 blinks for Z. The word BAD is 2
blinks, 1 blink, and 4 blinks with little pauses between the letters so you
won’t mistake the 7 blinks for a G. You’ll pause a bit longer between words.

This seems promising. The good news is that you no longer have to wave
the flashlight in the air; all you have to do is point and click. The bad news
is that one of the first messages you try to send (“How are you?”) turns
out to require a grand total of 131 blinks of light! Moreover, you forgot
about punctuation, so you don’t know how many blinks correspond to a
question mark.

But you’re close. Surely, you think, somebody must have faced this prob-
lem before, and you’re absolutely right. With daylight and a trip to the li-
brary for research, you discover a marvelous invention known as Morse code.
It’s exactly what you’ve been looking for, even though you must now relearn
how to “write” all the letters of the alphabet.

Here’s the difference: In the system you invented, every letter of the al-
phabet is a certain number of blinks, from 1 blink for A to 26 blinks for Z.
In Morse code, you have two kinds of blinks—short blinks and long blinks.
This makes Morse code more complicated, of course, but in actual use it
turns out to be much more efficient. The sentence “How are you?” now
requires only 32 blinks (some short, some long) rather than 131, and that’s
including a code for the question mark.

When discussing how Morse code works, people don’t talk about “short
blinks” and “long blinks.” Instead, they refer to “dots” and “dashes” be-
cause that’s a convenient way of showing the codes on the printed page. In
Morse code, every letter of the alphabet corresponds to a short series of
dots and dashes, as you can see in the following table.

A
A

B
b

C
C

D
D

E
E

F
F

G
G

H
H

I
I

S
S

T
T

U
U

V
V

W
W

X
X

Y
Y

Z
Z

J
J

K
K

L
L

M
M

N
N

O
O

P
P

Q
Q

R
R

Best Friends 5

Although Morse code has absolutely nothing to do with computers, becom-
ing familiar with the nature of codes is an essential preliminary to achiev-
ing a deep understanding of the hidden languages and inner structures of
computer hardware and software.

In this book, the word code usually means a system for transferring
information among people and machines. In other words, a code lets you
communicate. Sometimes we think of codes as secret. But most codes are not.
Indeed, most codes must be well understood because they’re the basis of
human communication.

In the beginning of One Hundred Years of Solitude, Gabriel Garcia
Marquez recalls a time when “the world was so recent that many things
lacked names, and in order to indicate them it was necessary to point.” The
names that we assign to things usually seem arbitrary. There seems to be no
reason why cats aren’t called “dogs” and dogs aren’t called “cats.” You could
say English vocabulary is a type of code.

The sounds we make with our mouths to form words are a code intelli-
gible to anyone who can hear our voices and understands the language that
we speak. We call this code “the spoken word,” or “speech.” We have other
code for words on paper (or on stone, on wood, or in the air, say, via sky-
writing). This code appears as handwritten characters or printed in news-
papers, magazines, and books. We call it “the written word,” or “text.” In
many languages, a strong correspondence exists between speech and text.
In English, for example, letters and groups of letters correspond (more or
less) to spoken sounds.

For people who can’t hear or speak, another code has been devised to help
in face-to-face communication. This is sign language, in which the hands and
arms form movements and gestures that convey individual letters of words
or whole words and concepts. For those who can’t see, the written word can
be replaced with Braille, which uses a system of raised dots that correspond
to letters, groups of letters, and whole words. When spoken words must be
transcribed into text very quickly, stenography or shorthand is useful.

We use a variety of different codes for communicating among ourselves
because some codes are more convenient than others. For example, the code
of the spoken word can’t be stored on paper, so the code of the written word
is used instead. Silently exchanging information across a distance in the dark
isn’t possible with speech or paper. Hence, Morse code is a convenient al-
ternative. A code is useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to store
and communicate numbers, sounds, music, pictures, and movies. Comput-
ers can’t deal with human codes directly because computers can’t duplicate
the ways in which human beings use their eyes, ears, mouths, and fingers.
Yet one of the recent trends in computer technology has been to enable our
desktop personal computers to capture, store, manipulate, and render all
types of information used in human communication, be it visual (text and
pictures), aural (spoken words, sounds, and music), or a combination of both
(animations and movies). All of these types of information require their own

6 Chapter One

codes, just as speech requires one set of human organs (mouths and ears)
while writing and reading require others (hands and eyes).

Even the table of Morse code shown on page 4 is itself a code of sorts.
The table shows that each letter is represented by a series of dots and dashes.
Yet we can’t actually send dots and dashes. Instead, the dots and dashes cor-
respond to blinks.

When sending Morse code with a flashlight, you turn the flashlight switch
on and off very quickly (a fast blink) for a dot. You leave the flashlight
turned on somewhat longer (a slower on-off blink) for a dash. To send an
A, for example, you turn the flashlight on and off very quickly and then on
and off at a lesser speed. You pause before sending the next character. By
convention, the length of a dash should be about three times that of a dot.
For example, if a dot is one second long, a dash is three seconds long. (In
reality, Morse code is transmitted much faster than that.) The receiver sees
the short blink and the long blink and knows it’s an A.

Pauses between the dots and dashes of Morse code are crucial. When you
send an A, for example, the flashlight should be off between the dot and the
dash for a period of time equal to about one dot. (If the dot is one second
long, the gap between dots and dashes is also a second.) Letters in the same
word are separated by longer pauses equal to about the length of one dash
(or three seconds if that’s the length of a dash). For example, here’s the
Morse code for “hello,” illustrating the pauses between the letters:

Words are separated by an off period of about two dashes (six seconds if a
dash is three seconds long). Here’s the code for “hi there”:

The lengths of time that the flashlight remains on and off aren’t fixed.
They’re all relative to the length of a dot, which depends on how fast the
flashlight switch can be triggered and also how quickly a Morse code sender
can remember the code for a particular letter. A fast sender’s dash may be
the same length as a slow sender’s dot. This little problem could make reading
a Morse code message tough, but after a letter or two, the receiver can usu-
ally figure out what’s a dot and what’s a dash.

At first, the definition of Morse code—and by definition I mean the
correspondence of various sequences of dots and dashes to the letters of the
alphabet—appears as random as the layout of a typewriter. On closer inspec-
tion, however, this is not entirely so. The simpler and shorter codes are as-
signed to the more frequently used letters of the alphabet, such as E and T.
Scrabble players and Wheel of Fortune fans might notice this right away. The
less common letters, such as Q and Z (which get you 10 points in Scrabble),
have longer codes.

Best Friends 7

Almost everyone knows a little Morse code. Three dots, three dashes, and
three dots represent SOS, the international distress signal. SOS isn’t an ab-
breviation for anything—it’s simply an easy-to-remember Morse code se-
quence. During the Second World War, the British Broadcasting Corporation
prefaced some radio broadcasts with the beginning of Beethoven’s Fifth Sym-
phony—BAH, BAH, BAH, BAHMMMMM—which Ludwig didn’t know at
the time he composed the music is the Morse code V, for Victory.

One drawback of Morse code is that it makes no differentiation between
uppercase and lowercase letters. But in addition to representing letters, Morse
code also includes codes for numbers by using a series of five dots and dashes:

1
1

2
2

3
3

4
4

5
5

6

7

8

9

0

6

7

8

9

0

These codes, at least, are a little more orderly than the letter codes. Most
punctuation marks use five, six, or seven dots and dashes:

.
.

,
,

?
?

:
:

;
;

-
-

/
/

"
"

'
'

(
(

)
)

=
=

+
+

$
$

¶
¶

_

/

Additional codes are defined for accented letters of some European languages
and as shorthand sequences for special purposes. The SOS code is one such
shorthand sequence: It’s supposed to be sent continuously with only a one-
dot pause between the three letters.

You’ll find that it’s much easier for you and your friend to send Morse code
if you have a flashlight made specifically for this purpose. In addition to the
normal on-off slider switch, these flashlights also include a pushbutton switch
that you simply press and release to turn the flashlight on and off. With some
practice, you might be able to achieve a sending and receiving speed of 5 or
10 words per minute—still much slower than speech (which is somewhere
in the 100-words-per-minute range), but surely adequate.

8 Chapter One

When finally you and your best friend memorize Morse code (for that’s
the only way you can become proficient at sending and receiving it), you can
also use it vocally as a substitute for normal speech. For maximum speed,
you pronounce a dot as dih (or dit for the last dot of a letter) and a dash as
dah. In the same way that Morse code reduces written language to dots and
dashes, the spoken version of the code reduces speech to just two vowel
sounds.

The key word here is two. Two types of blinks, two vowel sounds, two
different anything, really, can with suitable combinations convey all types
of information.

9

Chapter Two

Codes and
Combinations

orse code was invented by Samuel Finley Breese Morse (1791–1872),
whom we shall meet more properly later in this book. The inven-
tion of Morse code goes hand in hand with the invention of the

telegraph, which we’ll also examine in more detail. Just as Morse code pro-
vides a good introduction to the nature of codes, the telegraph provides a
good introduction to the hardware of the computer.

Most people find Morse code easier to send than to receive. Even if you
don’t have Morse code memorized, you can simply use this table, conve-
niently arranged in alphabetical order:

A
A

B
b

C
C

D
D

E
E

F
F

G
G

H
H

I
I

S
S

T
T

U
U

V
V

W
W

X
X

Y
Y

Z
Z

J
J

K
K

L
L

M
M

N
N

O
O

P
P

Q
Q

R
R

M

10 Chapter Two

Receiving Morse code and translating it back into words is considerably
harder and more time consuming than sending because you must work
backward to figure out the letter that corresponds to a particular coded se-
quence of dots and dashes. For example, if you receive a dash-dot-dash-dash,
you have to scan through the table letter by letter before you finally discover
that the code is the letter Y.

The problem is that we have a table that provides this translation:

Alphabetical letter → Morse code dots and dashes

But we don’t have a table that lets us go backward:

Morse code dots and dashes → Alphabetical letter

In the early stages of learning Morse code, such a table would certainly be
convenient. But it’s not at all obvious how we could construct it. There’s
nothing in those dots and dashes that we can put into alphabetical order.

So let’s forget about alphabetical order. Perhaps a better approach to
organizing the codes might be to group them depending on how many dots
and dashes they have. For example, a Morse code sequence that contains
either one dot or one dash can represent only two letters, which are E and T:

E
E

T
T

A combination of exactly two dots or dashes gives us four more letters—
I, A, N, and M:

I
I

A
A

N
N

M
M

A pattern of three dots or dashes gives us eight more letters:

S
s

U
u

D
d

K
k

R
r

W
w

G
g

O
o

And finally (if we want to stop this exercise before dealing with numbers and
punctuation marks), sequences of four dots and dashes give us 16 more
characters:

Codes and Combinations 11

H

V

F

Ü

L

Ä

P

J

B

X

C

Y

Z

Q

Ö

h

v

f

Ü

l

Ä

p

j

b

x

c

y

z

q

Ö

•

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes for a
total of 30 letters, 4 more than are needed for the 26 letters of the Latin
alphabet. For this reason, you’ll notice that 4 of the codes in the last table
are for accented letters.

These four tables might help you translate with greater ease when some-
one is sending you Morse code. After you receive a code for a particular letter,
you know how many dots and dashes it has, and you can at least go to the
right table to look it up. Each table is organized so that you find the all-dots
code in the upper left and the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Notice that each table
has twice as many codes as the table before it. This makes sense: Each
table has all the codes in the previous table followed by a dot, and all the
codes in the previous table followed by a dash.

We can summarize this interesting trend this way:

Number of
Dots and Dashes Number of Codes

1 2
2 4
3 8
4 16

Each of the four tables has twice as many codes as the table before it, so if
the first table has 2 codes, the second table has 2 × 2 codes, and the third
table has 2 × 2 × 2 codes. Here’s another way to show that:

Number of
Dots and Dashes Number of Codes

1 2
2 2 × 2
3 2 × 2 × 2
4 2 × 2 × 2 × 2

12 Chapter Two

Of course, once we have a number multiplied by itself, we can start us-
ing exponents to show powers. For example, 2 × 2 × 2 × 2 can be written
as 24 (2 to the 4th power). The numbers 2, 4, 8, and 16 are all powers of
2 because you can calculate them by multiplying 2 by itself. So our summary
can also be shown like this:

Number of
Dots and Dashes Number of Codes

1 21

2 22

3 23

4 24

This table has become very simple. The number of codes is simply 2 to the
power of the number of dots and dashes. We might summarize the table data
in this simple formula:

number of codes = 2number of dots and dashes

Powers of 2 tend to show up a lot in codes, and we’ll see another example
in the next chapter.

To make the process of decoding Morse code even easier, we might want
to draw something like the big treelike table shown here.

Codes and Combinations 13

This table shows the letters that result from each particular consecutive
sequence of dots and dashes. To decode a particular sequence, follow the
arrows from left to right. For example, suppose you want to know which
letter corresponds to the code dot-dash-dot. Begin at the left and choose the
dot; then continue moving right along the arrows and choose the dash and
then another dot. The letter is R, shown next to the last dot.

If you think about it, constructing such a table was probably necessary
for defining Morse code in the first place. First, it ensures that you don’t make
the dumb mistake of using the same code for two different letters! Second,
you’re assured of using all the possible codes without making the sequences
of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page,
we could continue it for codes of five dots and dashes and more. A sequence
of exactly five dots and dashes gives us 32 (2×2×2×2×2, or 25) additional
codes. Normally that would be enough for the 10 numbers and the 16 punc-
tuation symbols defined in Morse code, and indeed the numbers are encoded
with five dots and dashes. But many of the other codes that use a sequence
of five dots and dashes represent accented letters rather than punctuation
marks.

To include all the punctuation marks, the system must be expanded to six
dots and dashes, which gives us 64 (2×2×2×2×2×2, or 26) additional codes
for a grand total of 2+4+8+16+32+64, or 126, characters. That’s overkill for
Morse code, which leaves many of these longer codes “undefined.” The word
undefined used in this context refers to a code that doesn’t stand for any-
thing. If you were receiving Morse code and you got an undefined code,
you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

number of codes = 2number of dots and dashes

we could continue figuring out how many codes we get from using longer
sequences of dots and dashes:

Number of
Dots and Dashes Number of Codes

1 21 = 2
2 22 = 4
3 23 = 8
4 24 = 16
5 25 = 32
6 26 = 64
7 27 = 128
8 28 = 256
9 29 = 512

10 210 = 1024

14 Chapter Two

Fortunately, we don’t have to actually write out all the possible codes to
determine how many there would be. All we have to do is multiply 2 by itself
over and over again.

Morse code is said to be a binary (literally meaning two by two) code
because the components of the code consist of only two things—a dot and
a dash. That’s similar to a coin, which can land only on the head side or the
tail side. Binary objects (such as coins) and binary codes (such as Morse code)
are always described by powers of two.

What we’re doing by analyzing binary codes is a simple exercise in the
branch of mathematics known as combinatorics or combinatorial analysis.
Traditionally, combinatorial analysis is used most often in the fields of prob-
ability and statistics because it involves determining the number of ways that
things, like coins and dice, can be combined. But it also helps us understand
how codes can be put together and taken apart.

15

Chapter Three

Braille and
Binary Codes

amuel Morse wasn’t the first person to successfully translate the let-
ters of written language to an interpretable code. Nor was he the first
person to be remembered more as the name of his code than as him-

self. That honor must go to a blind French teenager born some 18 years after
Samuel Morse but who made his mark much more precociously. Little is
known of his life, but what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray,
France, just 25 miles east of Paris. His father
was a harness maker. At the age of three—an age
when young boys shouldn’t be playing in their
fathers’ workshops—he accidentally stuck a
pointed tool in his eye. The wound became in-
fected, and the infection spread to his other eye,
leaving him totally blind. Normally he would
have been doomed to a life of ignorance and
poverty (as most blind people were in those days),
but young Louis’s intelligence and desire to learn
were soon recognized. Through the intervention
of the village priest and a schoolteacher, he first
attended school in the village with the other
children and at the age of 10 was sent to the Royal Institution for Blind Youth
in Paris.

S

16 Chapter Three

One major obstacle in the education of the blind is, of course, their in-
ability to read printed books. Valentin Haüy (1745–1822), the founder of
the Paris school, had invented a system of raised letters on paper that could
be read by touch. But this system was very difficult to use, and only a few
books had been produced using this method.

The sighted Haüy was stuck in a paradigm. To him, an A was an A was
an A, and the letter A must look (or feel) like an A. (If given a flashlight to
communicate, he might have tried drawing letters in the air as we did be-
fore we discovered it didn’t work very well.) Haüy probably didn’t realize
that a type of code quite different from the printed alphabet might be more
appropriate for sightless people.

The origins of an alternative type of code came from an unexpected
source. Charles Barbier, a captain of the French army, had by 1819 devised
a system of writing he called écriture nocturne, or “night writing.” This
system used a pattern of raised dots and dashes on heavy paper and was
intended for use by soldiers in passing notes to each other in the dark when
quiet was necessary. The soldiers were able to poke these dots and dashes
into the back of the paper using an awl-like stylus. The raised dots could then
be read with the fingers.

The problem with Barbier’s system is that it was quite complex. Rather
than using patterns of dots and dashes that corresponded to letters of the
alphabet, Barbier devised patterns that corresponded to sounds, often requir-
ing many codes for a single word. The system worked fine for short mes-
sages in the field but was distinctly inadequate for longer texts, let alone
entire books.

Louis Braille became familiar with Barbier’s system at the age of 12. He
liked the use of raised dots, not only because it proved easy to read with the
fingers but also because it was easy to write. A student in the classroom
equipped with paper and a stylus could actually take notes and read them
back. Louis Braille diligently tried to improve the system and within three
years (at the age of 15) had come up with his own, the basics of which are
still used today. For many years, the system was known only within the
school, but it gradually made its way to the rest of the world. In 1835, Louis
Braille contracted tuberculosis, which would eventually kill him shortly after
his 43rd birthday in 1852.

Today, enhanced versions of the Braille system compete with tape-
recorded books for providing the blind with access to the written word, but
Braille still remains an invaluable system and the only way to read for people
who are both blind and deaf. In recent years, Braille has become more fa-
miliar in the public arena as elevators and automatic teller machines are made
more accessible to the blind.

What we’re going to do in this chapter is dissect Braille code and see how
it works. We don’t have to actually learn Braille or memorize anything. We
just want some insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically,
letters, numbers, and punctuation marks—is encoded as one or more raised

Braille and Binary Codes 17

dots within a two-by-three cell. The dots of the cell are commonly numbered
1 through 6:

1

2

3

4

5

6

In modern-day use, special typewriters or embossers punch the Braille dots
into the paper.

Because embossing just a couple pages of this book in Braille would be
prohibitively expensive, I’ve used a notation common for showing Braille
on the printed page. In this notation, all six dots in the cell are shown. Large
dots indicate the parts of the cell where the paper is raised. Small dots indi-
cate the parts of the cell that are flat. For example, in the Braille character

dots 1, 3, and 5 are raised and dots 2, 4, and 6 are not.
What should be interesting to us at this point is that the dots are binary.

A particular dot is either flat or raised. That means we can apply what we’ve
learned about Morse code and combinatorial analysis to Braille. We know
that there are 6 dots and that each dot can be either flat or raised, so the total
number of combinations of 6 flat and raised dots is 2 × 2 × 2 × 2 × 2 × 2, or
26, or 64.

Thus, the system of Braille is capable of representing 64 unique codes.
Here they are—all 64 possible Braille codes:

18 Chapter Three

If we find fewer than 64 codes used in Braille, we should question why
some of the 64 possible codes aren’t being used. If we find more than 64
codes used in Braille, we should question either our sanity or fundamental
truths of mathematics, such as 2 plus 2 equaling 4.

To begin dissecting the code of Braille, let’s look at the basic lowercase
alphabet:

For example, the phrase “you and me” in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little
bit of space; a larger space (essentially a cell with no raised dots) is used
between words.

This is the basis of Braille as Louis Braille devised it, or at least as it ap-
plies to the letters of the Latin alphabet. Louis Braille also devised codes for
letters with accent marks, common in French. Notice that there’s no code
for w, which isn’t used in classical French. (Don’t worry. The letter will show
up eventually.) At this point, only 25 of the 64 possible codes have been
accounted for.

Upon close examination, you’ll discover that the three rows of Braille
illustrated above show a pattern. The first row (letters a through j) uses only
the top four spots in the cell—dots 1, 2, 4, and 5. The second row duplicates
the first row except that dot 3 is also raised. The third row is the same ex-
cept that dots 3 and 6 are raised.

Since the days of Louis Braille, the Braille code has been expanded in
various ways. Currently the system used most often in published material
in English is called Grade 2 Braille. Grade 2 Braille uses many contractions
in order to save trees and to speed reading. For example, if letter codes appear
by themselves, they stand for common words. The following three rows
(including a “completed” third row) show these word codes:

Braille and Binary Codes 19

Thus, the phrase “you and me” can be written in Grade 2 Braille as this:

So far, I’ve described 31 codes—the no-raised-dots space between words
and the 3 rows of 10 codes for letters and words. We’re still not close to the
64 codes that are theoretically available. In Grade 2 Braille, as we shall see,
nothing is wasted.

First, we can use the codes for letters a through j combined with a raised
dot 6. These are used mostly for contractions of letters within words and
also include w and another word abbreviation:

For example, the word “about” can be written in Grade 2 Braille this way:

Second, we can take the codes for letters a through j and “lower” them
to use only dots 2, 3, 5, and 6. These codes are used for some punctuation
marks and contractions, depending on context:

The first four of these codes are the comma, semicolon, colon, and period.
Notice that the same code is used for both left and right parentheses but that
two different codes are used for open and closed quotation marks.

20 Chapter Three

We’re up to 51 codes so far. The following 6 codes use various unused
combinations of dots 3, 4, 5, and 6 to represent contractions and some
additional punctuation:

� � � � � �
st
/

ing ble
#

ar ' com
-

The code for “ble” is very important because when it’s not part of a word,
it means that the codes that follow should be interpreted as numbers. These
number codes are the same as those for letters a through j:

Thus, this sequence of codes

means the number 256.
If you’ve been keeping track, we need 7 more codes to reach the maxi-

mum of 64. Here they are:

The first (a raised dot 4) is used as an accent indicator. The others are used
as prefixes for some contractions and also for some other purposes: When
dots 4 and 6 are raised (the fifth code in this row), the code is a decimal point
in numbers or an emphasis indicator, depending on context. When dots 5
and 6 are raised, the code is a letter indicator that counterbalances a num-
ber indicator.

And finally (if you’ve been wondering how Braille encodes capital letters)
we have dot 6—the capital indicator. This signals that the letter that follows
is uppercase. For example, we can write the name of the original creator of
this system as

This is a capital indicator, the letter l, the contraction ou, the letters i and s,
a space, another capital indicator, and the letters b, r, a, i, l, l, and e. (In actual
use, the name might be abbreviated even more by eliminating the last two
letters, which aren’t pronounced.)

Braille and Binary Codes 21

In summary, we’ve seen how six binary elements (the dots) yield 64 pos-
sible codes and no more. It just so happens that many of these 64 codes
perform double duty depending on their context. Of particular interest is the
number indicator and the letter indicator that undoes the number indicator.
These codes alter the meaning of the codes that follow them—from letters
to numbers and from numbers back to letters. Codes such as these are of-
ten called precedence, or shift, codes. They alter the meaning of all subse-
quent codes until the shift is undone.

The capital indicator means that the following letter (and only the fol-
lowing letter) should be uppercase rather than lowercase. A code such as
this is known as an escape code. Escape codes let you “escape” from the
humdrum, routine interpretation of a sequence of codes and move to a new
interpretation. As we’ll see in later chapters, shift codes and escape codes
are common when written languages are represented by binary codes.

22

Chapter Four

Anatomy
of a Flashlight

lashlights are useful for numerous tasks, of which reading under the
covers and sending coded messages are only the two most obvious.
The common household flashlight can also take center stage in an

educational show-and-tell of the magical stuff known as electricity.
Electricity is an amazing phenomenon, managing to be pervasively useful

while remaining largely mysterious, even to people who pretend to know
how it works. But I’m afraid we must wrestle with electricity anyway. For-
tunately, we need to understand only a few basic concepts to comprehend
how it’s used inside computers.

The flashlight is certainly one of the simpler electrical appliances found
in most homes. Disassemble a typical flashlight, and you’ll find it consists
of a couple of batteries, a bulb, a switch, some metal pieces, and a plastic
case to hold everything together.

You can make your own no-frills flashlight by disposing of everything
except the batteries and the lightbulb. You’ll also need some short pieces of
insulated wire (with the insulation stripped from the ends) and enough hands
to hold everything together.

F

Anatomy of a Flashlight 23

Notice the two loose ends of the wires at the right of the diagram. That’s
our switch. Assuming that the batteries are good and the bulb isn’t burned
out, touching these loose ends together will turn on the light.

What we’ve constructed here is a simple electrical circuit, and the first
thing to notice is that a circuit is a circle. The lightbulb will be lit only if the
path from the batteries to the wire to the bulb to the switch and back to the
batteries is continuous. Any break in this circuit will cause the bulb to go
out. The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is
moving around the circuit, perhaps like water flowing through pipes. The
“water and pipes” analogy is quite common in explanations of how elec-
tricity works, but eventually it breaks down, as all analogies must. Electricity
is like nothing else in this universe, and we must confront it on its own terms.

The prevailing scientific wisdom regarding the workings of electricity is
called the electron theory, which says that electricity derives from the move-
ment of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is
made up of extremely small things called atoms. Every atom is composed
of three types of particles; these are called neutrons, protons, and electrons.
You can picture an atom as a little solar system, with the neutrons and pro-
tons bound into a nucleus and the electrons spinning around the nucleus like
planets around a sun:

24 Chapter Four

I should mention that this isn’t exactly what you’d see if you were able to
get a microscope powerful enough to see actual atoms, but it works as a
convenient model.

The atom shown on the preceding page has 3 electrons, 3 protons, and
4 neutrons, which means that it’s an atom of lithium. Lithium is one of 112
known elements, each of which has a particular atomic number ranging from
1 to 112. The atomic number of an element indicates the number of protons
in the nucleus of each of the element’s atoms and also (usually) the number
of electrons in each atom. The atomic number of lithium is 3.

Atoms can chemically combine with other atoms to form molecules.
Molecules usually have very different properties from the atoms they com-
prise. For example, water is composed of molecules that consist of two at-
oms of hydrogen and one atom of oxygen (hence, H2O). Obviously water
is appreciably different from either hydrogen or oxygen. Likewise, the
molecules of table salt consist of an atom of sodium and an atom of chlo-
rine, neither of which would be particularly appetizing on French fries.

Hydrogen, oxygen, sodium, and chlorine are all elements. Water and salt
are called compounds. Salt water, however, is a mixture rather than a com-
pound because the water and the salt maintain their own properties.

The number of electrons in an atom is usually the same as the number of
protons. But in certain circumstances, electrons can be dislodged from at-
oms. That’s how electricity happens.

The words electron and electricity both derive from the ancient Greek
word ηλεκτρον (elektron), which you might expect means something like
“little tiny invisible thing.” But no—ηλεκτρον is actually the Greek word
for “amber,” which is the glasslike hardened sap of trees. The reason for this
unlikely derivation is that the ancient Greeks experimented with rubbing
amber with wool, which produces something we now call static electricity.
Rubbing wool on amber causes the wool to pick up electrons from the amber.
The wool winds up with more electrons than protons, and the amber ends
up with fewer electrons than protons. In more modern experiments, carpeting
picks up electrons from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are said
to have a positive (+) charge and electrons are said to have a negative (−)
charge. Neutrons are neutral and have no charge. But even though we use
plus and minus signs to denote protons and electrons, the symbols don’t
really mean plus and minus in the arithmetical sense or that protons have
something that electrons don’t. The use of these symbols just means that
protons and electrons are opposite in some way. This opposite characteris-
tic manifests itself in how protons and electrons relate to each other.

Protons and electrons are happiest and most stable when they exist to-
gether in equal numbers. An imbalance of protons and electrons will attempt
to correct itself. When the carpet picks up electrons from your shoes, even-
tually everything gets evened out when you touch something and feel a spark.
That spark of static electricity is the movement of electrons by a rather cir-
cuitous route from the carpet through your body back to your shoes.

Anatomy of a Flashlight 25

Another way to describe the relationship between protons and electrons is
to note that opposite charges attract and like charges repel. But this isn’t what
we might assume by looking at the diagram of the atom. It looks like the
protons huddled together in the nucleus are attracting each other. The pro-
tons are held together by something stronger than the repulsion of like charges,
and that something is called the strong force. Messing around with the strong
force involves splitting the nucleus, which produces nuclear energy. In this
chapter, we’re merely fooling around with the electrons to get electricity.

Static electricity isn’t limited to the little sparks produced by fingers touch-
ing doorknobs. During storms, the bottoms of clouds accumulate electrons
while the tops of clouds lose electrons; eventually, the imbalance is evened out
with a stroke of lightning. Lightning is a lot of electrons moving very quickly
from one spot to another.

The electricity in the flashlight circuit is obviously much better mannered
than a spark or a lightning bolt. The light burns steadily and continuously
because the electrons aren’t just jumping from one place to another. As one
atom in the circuit loses an electron to another atom nearby, it grabs another
electron from an adjacent atom, which grabs an electron from another ad-
jacent atom, and so on. The electricity in the circuit is the passage of elec-
trons from atom to atom.

This doesn’t happen all by itself. We can’t just wire up any old bunch of
stuff and expect some electricity to happen. We need something to precipi-
tate the movement of electrons around the circuit. Looking back at our dia-
gram of the no-frills flashlight, we can safely assume that the thing that begins
the movement of electricity is not the wires and not the lightbulb, so it’s
probably the batteries.

Almost everybody knows a few things about the types of batteries used
in flashlights:

• They’re tubular in shape and come in different sizes, such as D,
C, A, AA, and AAA.

• Regardless of the battery’s size, they’re all labeled “1.5 volts.”
• One end of the battery is flat and is labeled with a minus sign (−);

the other end has a little protrusion and is labeled with a plus
sign (+).

• If you want your appliance to work right, it’s a good idea to
install the batteries correctly with the plus signs facing the
right way.

• Batteries wear out eventually. Sometimes they can be recharged,
sometimes not.

• And finally, we suspect that in some weird way, batteries produce
electricity.

26 Chapter Four

In all batteries, chemical reactions take place, which means that some
molecules break down into other molecules, or molecules combine to form
new molecules. The chemicals in batteries are chosen so that the reactions
between them generate spare electrons on the side of the battery marked with
a minus sign (called the negative terminal, or anode) and demand extra elec-
trons on the other side of the battery (the positive terminal, or cathode). In
this way, chemical energy is converted to electrical energy.

The chemical reaction can’t proceed unless there’s some way that the
extra electrons can be taken away from the negative terminal of the battery
and delivered back to the positive terminal. So if the battery isn’t connected
to anything, nothing much happens. (Actually the chemical reactions still
take place, but very slowly.) The reactions take place only if an electrical
circuit is present to take electrons away from the negative side and supply
electrons to the positive side. The electrons travel around this circuit in a
counterclockwise direction:

In this book, the color red is used to indicate that electricity is flowing
through the wires.

Electrons from the chemicals in the batteries might not so freely mingle
with the electrons in the copper wires if not for a simple fact: All electrons,
wherever they’re found, are identical. There’s nothing that distinguishes a
copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end
of the bottom battery takes electrons from the negative end of the top bat-
tery. It’s as if the two batteries have been combined into one bigger battery
with a positive terminal at one end and a negative terminal at the other end.
The combined battery is 3 volts rather than 1.5 volts.

Anatomy of a Flashlight 27

If we turn one of the batteries upside down, the circuit won’t work:

The two positive ends of the battery need electrons for the chemical reac-
tions, but there’s no way electrons can get to them because they’re attached
to each other. If the two positive ends of the battery are connected, the two
negative ends should be also:

This works. The batteries are said to be connected in parallel rather than in
series as shown earlier. The combined voltage is 1.5 volts, which is the same
as the voltage of each of the batteries. The light will probably still glow, but
not as brightly as with two batteries in series. But the batteries will last twice
as long.

We normally like to think of a battery as providing electricity to a circuit.
But we’ve seen that we can also think of a circuit as providing a way for a
battery’s chemical reactions to take place. The circuit takes electrons away
from the negative end of the battery and delivers them to the positive end
of the battery. The reactions in the battery proceed until all the chemicals
are exhausted, at which time you throw away the battery or recharge it.

28 Chapter Four

From the negative end of the battery to the positive end of the battery,
the electrons flow through the wires and the lightbulb. But why do we need
the wires? Can’t the electricity just flow through the air? Well, yes and no.
Yes, electricity can flow through air (particularly wet air), or else we wouldn’t
see lightning. But electricity doesn’t flow through air very readily.

Some substances are significantly better than others for carrying electricity.
The ability of an element to carry electricity is related to its subatomic struc-
ture. Electrons orbit the nucleus in various levels, called shells. An atom that
has just one electron in its outer shell can readily give up that electron, which
is what’s necessary to carry electricity. These substances are conducive to
carrying electricity and thus are said to be conductors. The best conductors
are copper, silver, and gold. It’s no coincidence that these three elements are
found in the same column of the periodic table. Copper is the most com-
mon substance for making wires.

The opposite of conductance is resistance. Some substances are more
resistant to the passage of electricity than others, and these are known as
resistors. If a substance has a very high resistance—meaning that it doesn’t
conduct electricity much at all—it’s known as an insulator. Rubber and plas-
tic are good insulators, which is why these substances are often used to coat
wires. Cloth and wood are also good insulators as is dry air. Just about
anything will conduct electricity, however, if the voltage is high enough.

Copper has a very low resistance, but it still has some resistance. The
longer a wire, the higher the resistance it has. If you tried wiring a flashlight
with wires that were miles long, the resistance in the wires would be so high
that the flashlight wouldn’t work.

The thicker a wire, the lower the resistance it has. This may be somewhat
counterintuitive. You might imagine that a thick wire requires much more
electricity to “fill it up.” But actually the thickness of the wire makes avail-
able many more electrons to move through the wire.

I’ve mentioned voltage but haven’t defined it. What does it mean when
a battery has 1.5 volts? Actually, voltage—named after Count Alessandro
Volta (1745–1827), who invented the first battery in 1800—is one of the
more difficult concepts of elementary electricity. Voltage refers to a poten-
tial for doing work. Voltage exists whether or not something is hooked up
to a battery.

Consider a brick. Sitting on the floor, the brick has very little potential.
Held in your hand four feet above the floor, the brick has more potential.
All you need do to realize this potential is drop the brick. Held in your hand
at the top of a tall building, the brick has much more potential. In all three
cases, you’re holding the brick and it’s not doing anything, but the potential
is different.

A much easier concept in electricity is the notion of current. Current is
related to the number of electrons actually zipping around the circuit. Cur-
rent is measured in amperes, named after André Marie Ampère (1775–1836),

Anatomy of a Flashlight 29

but everybody calls them amps, as in “a 10-amp fuse.” To get one amp of
current, you need 6,240,000,000,000,000,000 electrons flowing past a
particular point per second.

The water-and-pipes analogy helps out here: Current is similar to the
amount of water flowing through a pipe. Voltage is similar to the water
pressure. Resistance is similar to the width of a pipe—the smaller the pipe,
the larger the resistance. So the more water pressure you have, the more water
that flows through the pipe. The smaller the pipe, the less water that flows
through it. The amount of water flowing through a pipe (the current) is
directly proportional to the water pressure (the voltage) and inversely pro-
portional to the skinniness of the pipe (the resistance).

In electricity, you can calculate how much current is flowing through a
circuit if you know the voltage and the resistance. Resistance—the tendency
of a substance to impede the flow of electrons—is measured in ohms, named
after Georg Simon Ohm (1789–1854), who also proposed the famous Ohm’s
Law. The law states

I = E / R

where I is traditionally used to represent current in amperes, E is used to
represent voltage (it stands for electromotive force), and R is resistance.

For example, let’s look at a battery that’s just sitting around not connected
to anything:

The voltage E is 1.5. That’s a potential for doing work. But because the
positive and negative terminals are connected solely by air, the resistance (the
symbol R) is very, very, very high, which means the current (I) equals 1.5 volts
divided by a large number. This means that the current is just about zero.

Now let’s connect the positive and negative terminals with a short piece
of copper wire (and from here on, the insulation on the wires won’t be
shown):

30 Chapter Four

This is known as a short circuit. The voltage is still 1.5, but the resistance
is now very, very low. The current is 1.5 volts divided by a very small num-
ber. This means that the current will be very, very high. Lots and lots of
electrons will be flowing through the wire. In reality, the actual current will
be limited by the physical size of the battery. The battery will probably not
be able to deliver such a high current, and the voltage will drop below 1.5
volts. If the battery is big enough, the wire will get hot because the electri-
cal energy is being converted to heat. If the wire gets very hot, it will actu-
ally glow and might even melt.

Most circuits are somewhere between these two extremes. We can sym-
bolize them like so:

The squiggly line is recognizable to electrical engineers as the symbol for a
resistor. Here it means that the circuit has a resistance that is neither very
low nor very high.

If a wire has a low resistance, it can get hot and start to glow. This is how
an incandescent lightbulb works. The lightbulb is commonly credited to
America’s most famous inventor, Thomas Alva Edison (1847–1931), but the
concepts were well known at the time he patented the lightbulb (1879) and
many other inventors also worked on the problem.

Inside a lightbulb is a thin wire called a filament, which is commonly made
of tungsten. One end of the filament is connected to the tip at the bottom
of the base; the other end of the filament is connected to the side of the metal
base, separated from the tip by an insulator. The resistance of the wire causes
it to heat up. In open air, the tungsten would get hot enough to burn, but in
the vacuum of the lightbulb, the tungsten glows and gives off light.

Most common flashlights have two batteries connected in series. The total
voltage is 3.0 volts. A lightbulb of the type commonly used in a flashlight
has a resistance of about 4 ohms. Thus, the current is 3 volts divided by 4
ohms, or 0.75 ampere, which can also be expressed as 750 milliamperes. This
means that 4,680,000,000,000,000,000 electrons are flowing through the
lightbulb every second.

(A brief reality check: If you actually try to measure the resistance of a
flashlight lightbulb with an ohmmeter, you’ll get a reading much lower than
4 ohms. The resistance of tungsten is dependent upon its temperature, and
the resistance gets higher as the bulb heats up.)

Anatomy of a Flashlight 31

As you may know, lightbulbs you buy for your home are labeled with a
certain wattage. The watt is named after James Watt (1736–1819), who is
best known for his work on the steam engine. The watt is a measurement
of power (P) and can be calculated as

P = E × I

The 3 volts and 0.75 amp of our flashlight indicate that we’re dealing with
a 2.25-watt lightbulb.

Your home might be lit by 100-watt lightbulbs. These are designed for
the 120 volts of your home. Thus, the current that flows through them is
equal to 100 watts divided by 120 volts, or about 0.83 ampere. Hence, the
resistance of a 100-watt lightbulb is 120 volts divided by 0.83 ampere, or
144 ohms.

So we’ve seemingly analyzed everything about the flashlight—the bat-
teries, the wires, and the lightbulb. But we’ve forgotten the most impor-
tant part!

Yes, the switch. The switch controls whether electricity is flowing in the
circuit or not. When a switch allows electricity to flow, it is said to be on,
or closed. An off, or open, switch doesn’t allow electricity to flow. (The way
we use the words closed and open for switches is opposite to the way we use
them for a door. A closed door prevents anything from passing through it;
a closed switch allows electricity to flow.)

Either the switched is closed or it’s open. Either current flows or it doesn’t.
Either the lightbulb lights up or it doesn’t. Like the binary codes invented
by Morse and Braille, this simple flashlight is either on or off. There’s no in-
between. This similarity between binary codes and simple electrical circuits
is going to prove very useful in the chapters ahead.

32

Chapter Five

Seeing
Around Corners

ou’re twelve years old. One horrible day your best friend’s fam-
ily moves to another town. You speak to your friend on the tele-
phone now and then, but telephone conversations just aren’t the

same as those late-night sessions with the flashlights blinking out Morse code.
Your second-best friend, who lives in the house next door to yours, eventu-
ally becomes your new best friend. It’s time to teach your new best friend
some Morse code and get the late-night flashlights blinking again.

The problem is, your new best friend’s bedroom window doesn’t face your
bedroom window. The houses are side by side, but the bedroom windows
face the same direction. Unless you figure out a way to rig up a few mirrors
outside, the flashlights are now inadequate for after-dark communication.

Or are they?
Maybe you have learned something about electricity by this time, so you

decide to make your own flashlights out of batteries, lightbulbs, switches,
and wires. In the first experiment, you wire up the batteries and switch in
your bedroom. Two wires go out your window, across a fence, and into your
friend’s bedroom, where they’re connected to a lightbulb:

Your
house

Your friend’s
house

Y

Seeing Around Corners 33

Although I’m showing only one battery, you might actually be using two.
In this and future diagrams, this will be an off (or open) switch:

and this will be the switch when it’s on (or closed):

The flashlight in this chapter works the same way as the one illustrated
in the previous chapter, although the wires connecting the components for
this chapter’s flashlight are a bit longer. When you close the switch at your
end, the light goes on at your friend’s end:

Your
house

Your friend’s
house

Now you can send messages using Morse code.
Once you have one flashlight working, you can wire another long-distance

flashlight so that your friend can send messages to you:

Your
house

Your friend’s
house

Congratulations! You have just rigged up a bidirectional telegraph system.
You’ll notice that these are two identical circuits that are entirely indepen-
dent of and unconnected to each other. In theory, you can be sending a
message to your friend while your friend is sending a message to you (al-
though it might be hard for your brain to read and send messages at the
same time).

34 Chapter Five

You also might be clever enough to discover that you can reduce your wire
requirements by 25 percent by wiring the configuration this way:

Your
house

Your friend’s
house

Notice that the negative terminals of the two batteries are now connected.
The two circular circuits (battery to switch to bulb to battery) still operate
independently, even though they’re now joined like Siamese twins.

This connection is called a common. In this circuit the common extends
from the point where the leftmost lightbulb and battery are connected to the
point where the rightmost lightbulb and battery are connected. These con-
nections are indicated by dots.

Let’s take a closer look to assure ourselves that nothing funny is going on.
First, when you depress the switch on your side, the bulb in your friend’s
house lights up. The red wires show the flow of electricity in the circuit:

Your
house

Your friend’s
house

No electricity flows in the other part of the circuit because there’s no place
for the electrons to go to complete a circuit.

When you’re not sending but your friend is sending, the switch in your
friend’s house controls the lightbulb in your house. Once again, the red wires
show how electricity flows in the circuit:

Your
house

Your friend’s
house

Seeing Around Corners 35

When you and your friend both try to send at the same time, sometimes
both switches are open, sometimes one switch is closed but the other is open,
and sometimes both switches are depressed. In that case, the flow of elec-
tricity in the circuit looks like this:

Your
house

Your friend’s
house

No current flows through the common part of the circuit.
By using a common to join two separate circuits into one circuit, we’ve

reduced the electrical connection between the two houses from four wires
to three wires and reduced our wire expenses by 25 percent.

If we had to string the wires for a very long distance, we might be tempted
to reduce our expenses even more by eliminating another wire. Unfortunately,
this isn’t feasible with 1.5-volt D cells and small lightbulbs. But if we were
dealing with 100-volt batteries and much larger lightbulbs, it could certainly
be done.

Here’s the trick: Once you have established a common part of the circuit,
you don’t have to use wire for it. You can replace the wire with something
else. And what you can replace it with is a giant sphere approximately 7900
miles in diameter made up of metal, rock, water, and organic material, most
of which is dead. The giant sphere is known to us as Earth.

When I described good conductors in the last chapter, I mentioned silver,
copper, and gold, but not gravel and mulch. In truth, the earth isn’t such
a hot conductor, although some kinds of earth (damp soil, for example)
are better than others (such as dry sand). But one thing we learned about
conductors is this: The larger the better. A very thick wire conducts much
better than a very thin wire. That’s where the earth excels. It’s really, really,
really big.

To use the earth as a conductor, you can’t merely stick a little wire into
the ground next to the tomato plants. You have to use something that main-
tains a substantial contact with the earth, and by that I mean a conductor
with a large surface area. One good solution is a copper pole at least 8 feet
long and 1⁄2 inch in diameter. That provides 150 square inches of contact with
the earth. You can bury the pole into the ground with a sledgehammer and
then connect a wire to it. Or, if the cold-water pipes in your home are
made of copper and originate in the ground outside the house, you can
connect a wire to the pipe.

An electrical contact with the earth is called an earth in Great Britain and
a ground in America. A bit of confusion surrounds the word ground because

36 Chapter Five

it’s also often used to refer to a part of a circuit we’ve been calling the com-
mon. In this chapter, and until I indicate otherwise, a ground is a physical
connection with the earth.

When people draw electrical circuits, they use this symbol to represent a
ground:

Electricians use this symbol because they don’t like to take the time to draw
an 8-foot copper pole buried in the ground.

Let’s see how this works. We began this chapter by looking at a one-way
configuration like this:

Your
house

Your friend’s
house

If you were using high-voltage batteries and lightbulbs, you would need only
one wire between your house and your friend’s house because you could use
the earth as one of the connectors:

Your
house

Your friend’s
house

When you turn the switch on, electricity flows like this:

Your
house

Your friend’s
house

Seeing Around Corners 37

The electrons come out of the earth at your friend’s house, go through the
lightbulb and wire, the switch at your house, and then go into the positive
terminal of the battery. Electrons from the negative terminal of the battery
go into the earth.

You might also want to visualize electrons leaping from the 8-foot cop-
per pole buried in the backyard of your house into the earth, then scurrying
through the earth to get to the 8-foot copper pole buried in the backyard of
your friend’s house.

But if you consider that the earth is performing this same function for
many thousands of electrical circuits around the world, you might ask: How
do the electrons know where to go? Well, obviously they don’t. A different
image of the earth seems much more appropriate.

Yes, the earth is a massive conductor of electricity, but it can also be viewed
as both a source of and a repository for electrons. The earth is to electrons
as an ocean is to drops of water. The earth is a virtually limitless source of
electrons and also a giant sink for electrons.

The earth, however, does have some resistance. That’s why we can’t use
the earth ground to reduce our wiring needs if we’re playing around with
1.5-volt D cells and flashlight bulbs. The earth simply has too much resis-
tance for low-voltage batteries.

You’ll notice that the previous two diagrams include a battery with the
negative terminal connected to the ground:

I’m not going to draw this battery connected to the ground anymore. Instead,
I’m going to use the capital letter V, which stands for voltage. The one-way
lightbulb telegraph now looks like this:

V

Your friend’s
houseYour

house

The V stands for voltage, but it could also stand for vacuum. Think of the
V as an electron vacuum and think of the ground as an ocean of electrons.

38 Chapter Five

The electron vacuum pulls the electrons from the earth through the circuit,
doing work along the way (such as lighting a lightbulb).

The ground is sometimes also known as the point of zero potential. This
means that no voltage is present. A voltage—as I explained earlier—is a
potential for doing work, much as a brick suspended in the air is a poten-
tial source of energy. Zero potential is like a brick sitting on the ground—
there’s no place left for it to fall.

In Chapter 4, one of the first things we noticed was that circuits were
circles. Our new circuit doesn’t look like a circle at all. It still is one, how-
ever. You could replace the V with a battery with the negative terminal con-
nected to ground, and then you could draw a wire connecting all the places
you see a ground symbol. You’d end up with the same diagram that we
started with in this chapter.

So with the help of a couple of copper poles (or cold-water pipes), we can
construct a two-way Morse code system with just two wires crossing the
fence between your house and your friend’s:

Your friend’s
house

Your
house

V V

This circuit is functionally the same as the configuration shown previously,
in which three wires crossed the fence between the houses.

In this chapter, we’ve taken an important step in the evolution of com-
munications. Previously we had been able to communicate with Morse code
but only in a straight line of sight and only as far as the beam from a flash-
light would travel.

By using wires, not only have we constructed a system to communicate
around corners beyond the line of sight, but we’ve freed ourselves of the
limitation of distance. We can communicate over hundreds and thousands
of miles just by stringing longer and longer wires.

Well, not exactly. Although copper is a very good conductor of electric-
ity, it’s not perfect. The longer the wires, the more resistance they have. The
more resistance, the less current that flows. The less current, the dimmer the
lightbulbs.

So how long exactly can we make the wires? That depends. Let’s suppose
you’re using the original four-wire, bidirectional hookup without grounds
and commons, and you’re using flashlight batteries and lightbulbs. To keep
your costs down, you may have initially purchased some 20-gauge speaker
wire from Radio Shack at $9.99 per 100 feet. Speaker wire is normally used

Seeing Around Corners 39

to connect your speakers to your stereo system. It has two conductors,
so it’s also a good choice for our telegraph system. If your bedroom and
your friend’s bedroom are less than 50 feet apart, this one roll of wire is
all you need.

The thickness of wire is measured in American Wire Gauge, or AWG. The
smaller the AWG number, the thicker the wire and also the less resistance it
has. The 20-gauge speaker wire you bought has a diameter of about 0.032
inches and a resistance of about 10 ohms per 1000 feet, or 1 ohm for the
100-foot round-trip distance between the bedrooms.

That’s not bad at all, but what if we strung the wire out for a mile? The
total resistance of the wire would be more than 100 ohms. Recall from the
last chapter that our lightbulb was only 4 ohms. From Ohm’s Law, we can
easily calculate that the current through the circuit will no longer be 0.75
amp (3 volts divided by 4 ohms) as before, but will now be less than 0.03
amp (3 volts divided by more than 100 ohms). Almost certainly, that won’t
be enough current to light the bulb.

Using thicker wire is a good solution, but that can be expensive. Ten-gauge
wire (which Radio Shack sells as Automotive Hookup Wire at $11.99 for
35 feet, and you’d need twice as much because it has only one conductor
rather than two) is about 0.1 inch thick but has a resistance of only 1 ohm
per 1000 feet, or 5 ohms per mile.

Another solution is to increase the voltage and use lightbulbs with a much
higher resistance. For example, a 100-watt lightbulb that lights a room in
your house is designed to be used with 120 volts and has a resistance of about
144 ohms. The resistance of the wires will then affect the overall circuitry
much less.

These are problems faced 150 years ago by the people who strung up the
first telegraph systems across America and Europe. Regardless of the thick-
ness of the wires and the high levels of voltage, telegraph wires simply
couldn’t be continued indefinitely. At most, the limit for a working system
according to this scheme was a couple hundred miles. That’s nowhere close
to spanning the thousands of miles between New York and California.

The solution to this problem—not for flashlights but for the clicking and
clacking telegraphs of yesteryear—turns out to be a simple and humble
device, but one from which entire computers can be built.

40

Chapter Six

Telegraphs
and Relays

amuel Finley Breese Morse was born in 1791 in Charleston, Massa-
chusetts, the town where the Battle of Bunker Hill was fought and
which is now the northeast part of Boston. In the year of Morse’s

birth, the United States Constitution had been ratified just two years before
and George Washington was serving his first term as president. Catherine
the Great ruled Russia. Louis XVI and Marie Antoinette would lose their
heads two years later in the French Revolution. And in 1791, Mozart com-
pleted The Magic Flute, his last opera, and died later that year at the age
of 35.

Morse was educated at Yale and studied art
in London. He became a successful portrait art-
ist. His painting General Lafayette (1825) hangs
in New York’s City Hall. In 1836, he ran for
mayor of New York City on an independent
ticket and received 5.7 percent of the vote.
He was also an early photography buff. Morse
learned how to make daguerreotype photo-
graphs from Louis Daguerre himself and made
some of the first daguerreotypes in America. In
1840, he taught the process to the 17-year-old
Mathew Brady, who with his colleagues would
be responsible for creating the most memorable
photographs of the Civil War, Abraham Lincoln,
and Samuel Morse himself.

S

Telegraphs and Relays 41

But these are just footnotes to an eclectic career. Samuel F. B. Morse is best
known these days for his invention of the telegraph and the code that bears
his name.

The instantaneous worldwide communication we’ve become accustomed
to is a relatively recent development. In the early 1800s, you could commu-
nicate instantly and you could communicate over long distances, but you
couldn’t do both at the same time. Instantaneous communication was lim-
ited to as far as your voice could carry (no amplification available) or as far
as the eye could see (aided perhaps by a telescope). Communication over
longer distances by letter took time and involved horses, trains, or ships.

For decades prior to Morse’s invention, many attempts were made to
speed long-distance communication. Technically simple methods em-
ployed a relay system of men standing on hills waving flags in semaphore
codes. Technically more complex solutions used large structures with mov-
able arms that did basically the same thing as men waving flags.

The idea of the telegraph (literally meaning “far writing”) was certainly
in the air in the early 1800s, and other inventors had taken a stab at it be-
fore Samuel Morse began experimenting in 1832. In principle, the idea be-
hind an electrical telegraph was simple: You do something at one end of a
wire that causes something to happen at the other end of the wire. This is
exactly what we did in the last chapter when we made a long-distance flash-
light. However, Morse couldn’t use a lightbulb as his signaling device because
a practical one wouldn’t be invented until 1879. Instead, Morse relied upon
the phenomenon of electromagnetism.

If you take an iron bar, wrap it with a couple hundred turns of thin wire,
and then run a current through the wire, the iron bar becomes a magnet. It
then attracts other pieces of iron and steel. (There’s enough thin wire in the
electromagnet to create a resistance great enough to prevent the electro-
magnet from constituting a short circuit.) Remove the current, and the iron
bar loses its magnetism:

The electromagnet is the foundation of the telegraph. Turning the switch on
and off at one end causes the electromagnet to do something at the other end.

Morse’s first telegraphs were actually more complex than the ones that
later evolved. Morse felt that a telegraph system should actually write some-
thing on paper, or as computer users would later phrase it, “produce a hard
copy.” This wouldn’t necessarily be words, of course, because that would

42 Chapter Six

be too complex. But something should be written on paper, whether it be
squiggles or dots and dashes. Notice that Morse was stuck in a paradigm
that required paper and reading, much like Valentin Haüy’s notion that books
for the blind should use raised letters of the alphabet.

Although Samuel Morse notified the patent office in 1836 that he had
invented a successful telegraph, it wasn’t until 1843 that he was able to
persuade Congress to fund a public demonstration of the device. The his-
toric day was May 24, 1844, when a telegraph line rigged between Wash-
ington, D.C., and Baltimore, Maryland, successfully carried the biblical
message: “What hath God wrought!”

The traditional telegraph “key” used for sending messages looked some-
thing like this:

Despite the fancy appearance, this was just a switch designed for maximum
speed. The most comfortable way to use the key for long periods of time was
to hold the handle between thumb, forefinger, and middle finger, and tap it
up and down. Holding the key down for a short period of time produced a
Morse code dot. Holding it down longer produced a Morse code dash.

At the other end of the wire was a receiver that was basically an electro-
magnet pulling a metal lever. Originally, the electromagnet controlled a pen.
While a mechanism using a wound-up spring slowly pulled a roll of paper
through the gadget, an attached pen bounced up and down and drew dots
and dashes on the paper. A person who could read Morse code would then
transcribe the dots and dashes into letters and words.

Of course, we humans are a lazy species, and telegraph operators soon
discovered that they could transcribe the code simply by listening to the pen
bounce up and down. The pen mechanism was eventually eliminated in favor
of the traditional telegraph “sounder,” which looked something like this:

When the telegraph key was pressed, the electromagnet in the sounder pulled
the movable bar down and it made a “click” noise. When the key was
released, the bar sprang back to its normal position, making a “clack”
noise. A fast “click-clack” was a dot; a slower “click…clack” was a dash.

Telegraphs and Relays 43

The key, the sounder, a battery, and some wires can be connected just like
the lightbulb telegraph in the preceding chapter:

Your telegraph
station

Your friend’s
telegraph station

As we discovered, you don’t need two wires connecting the two telegraph
stations. One wire will suffice if the earth provides the other half of the
circuit.

As we did in the previous chapter, we can replace the battery connected
to the ground with a capital V. So the complete one-way setup looks some-
thing like this:

V

Your telegraph
station

Your friend’s
telegraph station

Two-way communication simply requires another key and sender. This is
similar to what we did in the preceding chapter.

The invention of the telegraph truly marks the beginning of modern com-
munication. For the first time, people were able to communicate further than
the eye could see or the ear could hear and faster than a horse could gallop.
That this invention used a binary code is all the more intriguing. In later
forms of electrical and wireless communication, including the telephone,
radio, and television, binary codes were abandoned, only to later make an
appearance in computers, compact discs, digital videodiscs, digital satellite
television broadcasting, and high-definition TV.

Morse’s telegraph triumphed over other designs in part because it was
tolerant of bad line conditions. If you strung a wire between a key and a
sounder, it usually worked. Other telegraph systems were not quite as for-
giving. But as I mentioned in the last chapter, a big problem with the tele-
graph lay in the resistance of long lengths of wire. Although some telegraph
lines used up to 300 volts and could work over a 300-mile length, wires
couldn’t be extended indefinitely.

44 Chapter Six

One obvious solution is to have a relay system. Every couple hundred
miles or so, a person equipped with a sounder and a key could receive a
message and resend it.

Now imagine that you have been hired by the telegraph company to be
part of this relay system. They have put you out in the middle of nowhere
between New York and California in a little hut with a table and a chair. A
wire coming through the east window is connected to a sounder. Your tele-
graph key is connected to a battery and wire going out the west window. Your
job is to receive messages originating in New York and to resend them,
eventually to reach California.

At first, you prefer to receive an entire message before resending it. You
write down the letters that correspond to the clicks of the sounder, and when
the message is finished, you start sending it using your key. Eventually you
get the knack of sending the message as you’re hearing it without having to
write the whole thing down. This saves time.

One day while resending a message, you look at the bar on the sounder
bouncing up and down, and you look at your fingers bouncing the key up
and down. You look at the sounder again and you look at the key again, and
you realize that the sounder is bouncing up and down the same way the key
is bouncing up and down. So you go outside and pick up a little piece of wood
and you use the wood and some string to physically connect the sounder and
the key:

V

Out
In

Now it works by itself, and you can take the rest of the afternoon off and
go fishing.

It’s an interesting fantasy, but in reality Samuel Morse had understood the
concept of this device early on. The device we’ve invented is called a repeater,
or a relay. A relay is like a sounder in that an incoming current is used to
power an electromagnet that pulls down a metal lever. The lever, however,
is used as part of a switch connecting a battery to an outgoing wire. In this
way, a weak incoming current is “amplified” to make a stronger outgoing
current.

Drawn rather schematically, the relay looks like this:

Telegraphs and Relays 45

V

OutIn

When an incoming current triggers the electromagnet, the electromagnet
pulls down a flexible strip of metal that acts like a switch to turn on an
outgoing current:

V

OutIn

So a telegraph key, a relay, and a sounder are connected more or less like this:

V

V

Your telegraph
station

Your friend’s
telegraph station

The relay station

46 Chapter Six

The relay is a remarkable device. It’s a switch, surely, but a switch that’s
turned on and off not by human hands but by a current. You could do
amazing things with such devices. You could actually assemble much of a
computer with them.

Yes, this relay thing is much too sweet an invention to leave sitting around
the telegraphy museum. Let’s grab one and stash it inside our jacket and walk
quickly past the guards. This relay will come in very handy. But before we
can use it, we’re going to have to learn to count.

47

Chapter Seven

Our Ten Digits

he idea that language is merely a code seems readily acceptable.
Many of us at least attempted to learn a foreign language in high
school, so we’re willing to acknowledge that the animal we call a

cat in English can also be a gato, chat, Katze, КОШКа, or καττα.
Numbers, however, seem less culturally malleable. Regardless of the lan-

guage we speak and the way we pronounce the numbers, just about everybody
we’re likely to come in contact with on this planet writes them the same way:

1 2 3 4 5 6 7 8 9 10
Isn’t mathematics called “the universal language” for a reason?

Numbers are certainly the most abstract codes we deal with on a regu-
lar basis. When we see the number

3
we don’t immediately need to relate it to anything. We might visualize 3
apples or 3 of something else, but we’d be just as comfortable learning from
context that the number refers to a child’s birthday, a television channel, a
hockey score, or the number of cups of flour in a cake recipe. Because our
numbers are so abstract to begin with, it’s more difficult for us to understand
that this number of apples

′
T

48 Chapter Seven

doesn’t necessarily have to be denoted by the symbol

3
Much of this chapter and the next will be devoted to persuading ourselves
that this many apples

can also be indicated by writing

11
Let’s first dispense with the idea that there’s something inherently spe-

cial about the number ten. That most civilizations have based their number
systems around ten (or sometimes five) isn’t surprising. From the very be-
ginning, people have used their fingers to count. Had our species developed
possessing eight or twelve fingers, our ways of counting would be a little
different. It’s no coincidence that the word digit can refer to fingers or toes
as well as numbers or that the words five and fist have similar roots.

So in that sense, using a base-ten, or decimal (from the Latin for ten),
number system is completely arbitrary. Yet we endow numbers based on ten
with an almost magical significance and give them special names. Ten years
is a decade; ten decades is a century; ten centuries is a millennium. A thou-
sand thousands is a million; a thousand millions is a billion. These numbers
are all powers of ten:

101 =10
102 =100
103 =1000 (thousand)
104 =10,000
105 =100,000
106 =1,000,000 (million)
107 =10,000,000
108 =100,000,000
109 =1,000,000,000 (billion)

Most historians believe that numbers were originally invented to count
things, such as people, possessions, and transactions in commerce. For ex-
ample, if someone owned four ducks, that might be recorded with drawings
of four ducks:

Our Ten Digits 49

Eventually the person whose job it was to draw the ducks thought, “Why
do I have to draw four ducks? Why can’t I draw one duck and indicate that
there are four of them with, I don’t know, a scratch mark or something?”

And then there came the day when someone had 27 ducks, and the scratch
marks got ridiculous:

Someone said, “There’s got to be a better way,” and a number system was
born.

Of all the early number systems, only Roman numerals are still in com-
mon use. You find them on the faces of clocks and watches, used for dates
on monuments and statues, for some page numbering in books, for some items
in an outline, and—most annoyingly—for the copyright notice in movies.
(The question “What year was this picture made?” can often be answered
only if one is quick enough to decipher MCMLIII as the tail end of the credits
goes by.)

Twenty-seven ducks in Roman numerals is

The concept here is easy enough: The X stands for 10 scratch marks and the
V stands for 5 scratch marks.

The symbols of Roman numerals that survive today are

I V X L C D M
The I is a one. This could be derived from a scratch mark or a single raised
finger. The V, which is probably a symbol for a hand, stands for five. Two
V’s make an X, which stands for ten. The L is a fifty. The letter C comes from
the word centum, which is Latin for a hundred. D is five hundred. Finally,
M comes from the Latin word mille, or a thousand.

Although we might not agree, for a long time Roman numerals were
considered easy to add and subtract, and that’s why they survived so long
in Europe for bookkeeping. Indeed, when adding two Roman numerals, you
simply combine all the symbols from both numbers and then simplify the
result using just a few rules: Five I’s make a V, two V’s make an X, five X’s
make an L, and so forth.

50 Chapter Seven

But multiplying and dividing Roman numerals is difficult. Many other
early number systems (such as that of the ancient Greeks) are similarly in-
adequate for working with numbers in a sophisticated manner. While the
Greeks developed an extraordinary geometry still taught virtually unchanged
in high schools today, the ancient Greeks aren’t known for their algebra.

The number system we use today is known as the Hindu-Arabic or
Indo-Arabic. It’s of Indian origin but was brought to Europe by Arab
mathematicians. Of particular renown is the Persian mathematician
Muhammed ibn-Musa al-Khwarizmi (from whose name we have derived the
word algorithm) who wrote a book on algebra around A.D. 825 that used
the Hindu system of counting. A Latin translation dates from A.D. 1120 and
was influential in hastening the transition throughout Europe from Roman
numerals to our present Hindu-Arabic system.

The Hindu-Arabic number system was different from previous number
systems in three ways:

• The Hindu-Arabic number system is said to be positional, which
means that a particular digit represents a different quantity de-
pending on where it is found in the number. Where digits appear
in a number is just as significant (actually, more significant) than
what the digits actually are. Both 100 and 1,000,000 have only a
single 1 in them, yet we all know that a million is much larger
than a hundred.

• Virtually all early number systems have something that the
Hindu-Arabic system does not have, and that’s a special symbol
for the number ten. In our number system, there’s no special
symbol for ten.

• On the other hand, virtually all of the early number systems are
missing something that the Hindu-Arabic system has, and which
turns out to be much more important than a symbol for ten. And
that’s the zero.

Yes, the zero. The lowly zero is without a doubt one of the most impor-
tant inventions in the history of numbers and mathematics. It supports
positional notation because it allows differentiation of 25 from 205 and 250.
The zero also eases many mathematical operations that are awkward in
nonpositional systems, particularly multiplication and division.

The whole structure of Hindu-Arabic numbers is revealed in the way we
pronounce them. Take 4825, for instance. We say “four thousand, eight
hundred, twenty-five.” That means

four thousands
eight hundreds
two tens and
five.

Our Ten Digits 51

Or we can write the components like this:

4825 = 4000 + 800 + 20 + 5

Or breaking it down even further, we can write the number this way:

4825 = 4 ×1000 +
8 ×100 +
2 ×10 +
5 ×1

Or, using powers of ten, the number can be rewritten like this:

4825 = 4 ×10 3 +
8 ×10 2 +
2 ×10 1 +
5 ×10 0

Remember that any number to the 0 power equals 1.
Each position in a multidigit number has a particular meaning, as shown

in the following diagram. The seven boxes shown here let us represent any
number from 0 through 9,999,999:

,,
Number of ones
Number of tens
Number of hundreds
Number of thousands
Number of ten thousands
Number of hundred thousands
Number of millions

Each position corresponds to a power of ten. We don’t need a special sym-
bol for ten because we set the 1 in a different position and we use the 0 as
a placeholder.

What’s also really nice is that fractional quantities shown as digits
to the right of a decimal point follow this same pattern. The number
42,705.684 is

4 ×10,000 +
2 ×1000 +
7 ×100 +
0 ×10 +
5 ×1 +
6 ÷10 +
8 ÷100 +
4 ÷1000

52 Chapter Seven

This number can also be written without any division, like this:

4 × 10,000 +
2 × 1000 +
7 × 100 +
0 × 10 +
5 × 1 +
6 × 0.1 +
8 × 0.01 +
4 × 0.001

Or, using powers of ten, the number is

4 × 104 +
2 × 103 +
7 × 102 +
0 × 101 +
5 × 100 +
6 × 10-1 +
8 × 10-2 +
4 × 10-3

Notice how the exponents go down to zero and then become negative
numbers.

We know that 3 plus 4 equals 7. Similarly, 30 plus 40 equals 70, 300 plus
400 equals 700, and 3000 plus 4000 equals 7000. This is the beauty of the
Hindu-Arabic system. When you add decimal numbers of any length, you
follow a procedure that breaks down the problem into steps. Each step involves
nothing more complicated than adding pairs of single-digit numbers. That’s
why someone a long time ago forced you to memorize an addition table:

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Our Ten Digits 53

Find the two numbers you wish to add in the top row and the left column.
Follow down and across to get the sum. For example, 4 plus 6 equals 10.

Similarly, when you need to multiply two decimal numbers, you follow
a somewhat more complicated procedure but still one that breaks down the
problem so that you need do nothing more complex than adding or multi-
plying single-digit decimal numbers. Your early schooling probably also
entailed memorizing a multiplication table:

x 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

What’s best about the positional system of notation isn’t how well it
works, but how well it works for counting systems not based on ten. Our
number system isn’t necessarily appropriate for everyone. One big problem
with our base-ten system of numbers is that it doesn’t have any relevance
for cartoon characters. Most cartoon characters have only four fingers on
each hand (or paw), so they prefer a number system that’s based on eight.
Interestingly enough, much of what we know about decimal numbering
can be applied to a numbering system more appropriate for our friends in
cartoons.

54

Chapter Eight

Alternatives to Ten

en is an exceptionally important number to us humans. Ten is the
number of fingers and toes most of us have, and we certainly prefer
to have all ten of each. Because our fingers are convenient for

counting, we humans have adapted an entire number system that’s based on
the number 10.

1

2 3 4
5

10

987
6

As I mentioned in the previous chapter, the number system that we use
is called base ten, or decimal. The number system seems so natural to us that
it’s difficult at first to conceive of alternatives. Indeed, when we see the
number 10 we can’t help but think that this number refers to this many
ducks:

10 =

T

Alternatives to Ten 55

But the only reason that the number 10 refers to this many ducks is that
this many ducks is the same as the number of fingers we have. If human
beings had a different number of fingers, the way we counted would be
different, and 10 would mean something else. That same number 10 could
refer to this many ducks:

10 =

or this many ducks:

10 =

or even this many ducks:

10 =

When we get to the point where 10 means just two ducks, we’ll be ready to
examine how switches, wires, lightbulbs, and relays (and by extension,
computers) can represent numbers.

What if human beings had only four fingers on each hand, like cartoon
characters? We probably never would have thought to develop a number
system based on ten. Instead, we would have considered it normal and natu-
ral and sensible and inevitable and incontrovertible and undeniably proper
to base our number system on eight. We wouldn’t call this a decimal num-
ber system. We’d call it an octal number system, or base eight.

If our number system were organized around eight rather than ten, we
wouldn’t need the symbol that looks like this:

9

Show this symbol to any cartoon character and you’ll get the response,
“What’s that? What’s it for?” And if you think about it a moment, we also
wouldn’t need the symbol that looks like this:

8

In the decimal number system, there’s no special symbol for ten, so in the
octal number system there’s no special symbol for eight.

56 Chapter Eight

The way we count in the decimal number system is 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, and then 10. The way we count in the octal number system is 0, 1, 2,
3, 4, 5, 6, 7, and then what? We’ve run out of symbols. The only thing that
makes sense is 10, and that’s correct. In octal, the next number after 7 is 10.
But this 10 doesn’t mean the number of fingers that humans have. In octal,
10 refers to the number of fingers that cartoon characters have.

1

2 3

4

10

76

5

We can continue counting on our four-toed feet:

11

12 13 14
20

171615

When you’re working with number systems other than decimal, you can
avoid some confusion if you pronounce a number like 10 as one zero.
Similarly, 13 is pronounced one three and 20 is pronounced two zero. To
really avoid confusion, we can say two zero base eight or two zero octal.

Even though we’ve run out of fingers and toes, we can still continue count-
ing in octal. It’s basically the same as counting in decimal except that we skip
every number that has an 8 or a 9 in it. And of course, the actual numbers
refer to different quantities:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22,
23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43,
44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64,

65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100…

Alternatives to Ten 57

That last number is pronounced one zero zero. It’s the number of fingers
that cartoon characters have, multiplied by itself.

When writing decimal and octal numbers, we can avoid confusion and
denote which is which by using a subscript to indicate the numbering sys-
tem. The subscript TEN means base ten or decimal, and EIGHT means base
eight or octal.

Thus, the number of dwarfs that Snow White meets is 7TEN or 7EIGHT

The number of fingers that cartoon characters have is 8TEN or 10EIGHT

The number of symphonies that Beethoven wrote is 9TEN or 11EIGHT

The number of fingers that humans have is 10TEN or 12EIGHT

The number of months in a year is 12TEN or 14EIGHT

The number of days in a fortnight is 14TEN or 16EIGHT

The “sweet” birthday celebration is 16TEN or 20EIGHT

The number of hours in a day is 24TEN or 30EIGHT

The number of letters in the Latin alphabet is 26TEN or 32EIGHT

The number of fluid ounces in a quart is 32TEN or 40EIGHT

The number of cards in a deck is 52TEN or 64EIGHT

The number of squares on a chessboard is 64TEN or 100EIGHT

The most famous address on Sunset Strip is 77TEN or 115EIGHT

The number of yards in an American football field is 100TEN or 144EIGHT

The number of starting women singles players at Wimbledon is 128TEN or 200EIGHT

The number of square miles in Memphis is 256TEN or 400EIGHT

Notice that there are a few nice round octal numbers in this list, such as
100EIGHT and 200EIGHT and 400EIGHT. By the term nice round number we
usually mean a number that has some zeros at the end. Two zeros on the
end of a decimal number means that the number is a multiple of 100TEN,
which is 10TEN times 10TEN. With octal numbers, two zeros on the end means
that the number is a multiple of 100EIGHT, which is 10EIGHT times 10EIGHT (or
8TEN times 8TEN, which is 64TEN).

You might also notice that these nice round octal numbers 100EIGHT and
200EIGHT and 400EIGHT have the decimal equivalents 64TEN, 128TEN, and
256TEN, all of which are powers of two. This makes sense. The number
400EIGHT (for example) is 4EIGHT times 10EIGHT times 10EIGHT, all of which are
powers of two. And anytime we multiply a power of two by a power of two,
we get another power of two.

58 Chapter Eight

The following table shows some powers of two with the decimal and octal
representations:

Power of Two Decimal Octal
20 1 1
21 2 2
22 4 4
23 8 10
24 16 20
25 32 40
26 64 100
27 128 200
28 256 400
29 512 1000

210 1024 2000
211 2048 4000
212 4096 10000

The nice round numbers in the rightmost column are a hint that number
systems other than decimal might help in working with binary codes.

The octal system isn’t different from the decimal system in any structural
way. It just differs in details. For example, each position in an octal num-
ber is a digit that’s multiplied by a power of eight:

Number of ones
Number of eights
Number of sixty-fours
Number of five hundred twelves
Number of four thousand ninety-sixes
Number of thirty-two thousand
seven hundred sixty-eights

Thus, an octal number such as 3725EIGHT can be broken down like so:

3725EIGHT = 3000EIGHT + 700EIGHT + 20EIGHT + 5EIGHT

This can be rewritten in any of several ways. Here’s one way, using the
powers of eight in their decimal forms:

3725EIGHT = 3 × 512TEN +
7 × 64TEN +
2 × 8TEN +
5 × 1

Alternatives to Ten 59

This is the same thing with the powers of eight shown in their octal form:

3725EIGHT = 3 × 1000EIGHT +
7 × 100EIGHT +
2 × 10EIGHT +
5 × 1

Here’s another way of doing it:

3725EIGHT = 3 × 83 +
7 × 82 +
2 × 81 +
5 × 80

If you work out this calculation in decimal, you’ll get 2005TEN. This is how
you can convert octal numbers to decimal numbers.

We can add and multiply octal numbers the same way we add and mul-
tiply decimal numbers. The only real difference is that we use different tables
for adding and multiplying the individual digits. Here’s the addition table
for octal numbers:

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

For example, 5EIGHT + 7EIGHT = 14EIGHT. So we can add two longer octal num-
bers the same way we add decimal numbers:

135
+ 643
1000

To begin with the right column, 5 plus 3 equals 10. Put down the 0, carry
the 1. One plus 3 plus 4 equals 10. Put down the 0, carry the 1. One plus 1
plus 6 equals 10.

Similarly, 2 times 2 is still 4 in octal. But 3 times 3 isn’t 9. How could it
be? Instead 3 times 3 is 11EIGHT, which is the same amount as 9TEN. You can
see the entire octal multiplication table at the top of the following page.

60 Chapter Eight

x 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 10 12 14 16

3 0 3 6 11 14 17 22 25

4 0 4 10 14 20 24 30 34

5 0 5 12 17 24 31 36 43

6 0 6 14 22 30 36 44 52

7 0 7 16 25 34 43 52 61

Here we have 4 × 6 equaling 30EIGHT, but 30EIGHT is the same as 24TEN, which
is what 4 × 6 equals in decimal.

Octal is as valid a number system as decimal. But let’s go further. Now that
we’ve developed a numbering system for cartoon characters, let’s develop
something that’s appropriate for lobsters. Lobsters don’t have fingers exactly,
but they do have pincers at the ends of their two front legs. An appropri-
ate number system for lobsters is the quaternary system, or base four:

1 2 3 10

Counting in quaternary goes like this: 0, 1, 2, 3, 10, 11, 12, 13, 20, 21,
22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, and so forth.

I’m not going to spend much time with the quaternary system because we’ll
be moving on shortly to something much more important. But we can see how
each position in a quaternary number corresponds this time to a power of four:

Number of ones
Number of fours
Number of sixteens
Number of sixty-fours
Number of two hundred fifty-sixes
Number of one thousand twenty-fours

Alternatives to Ten 61

The quaternary number 31232 can be written like this:

31232FOUR = 3 × 256TEN +
1 × 64TEN +
2 × 16TEN +
3 × 4TEN +
2 × 1TEN

which is the same as

31232FOUR = 3 × 10000FOUR +
1 × 1000FOUR +
2 × 100FOUR +
3 × 10FOUR +
2 × 1FOUR

And it’s also the same as

31232FOUR = 3 × 44 +
1 × 43 +
2 × 42 +
3 × 41 +
2 × 40

If we do the calculations in decimal, we’ll find that 31232FOUR equals 878TEN.
Now we’re going to make another leap, and this one is extreme. Suppose

we were dolphins and must resort to using our two flippers for counting.
This is the number system known as base two, or binary (from the Latin for
two by two). It seems likely that we’d have only two digits, and these two
digits would be 0 and 1.

Now, 0 and 1 isn’t a whole lot to work with, and it takes some practice
to get accustomed to binary numbers. The big problem is that you run out
of digits very quickly. For example, here’s how a dolphin counts using its
flippers:

1
10

62 Chapter Eight

Yes, in binary the next number after 1 is 10. This is startling, but it shouldn’t
really be a surprise. No matter what number system we use, whenever we
run out of single digits, the first two-digit number is always 10. In binary
we count like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, 1111, 10000, 10001…

These numbers might look large, but they’re really not. It’s more accurate
to say that binary numbers get long very quickly rather than large:

The number of heads that humans have is 1TEN or 1TWO

The number of flippers that dolphins have is 2TEN or 10TWO

The number of teaspoons in a tablespoon is 3TEN or 11TWO

The number of sides to a square is 4TEN or 100TWO

The number of fingers on one human hand is 5TEN or 101TWO

The number of legs on an insect is 6TEN or 110TWO

The number of days in a week is 7TEN or 111TWO

The number of musicians in an octet is 8TEN or 1000TWO

The number of planets in our solar system (including Pluto) is 9TEN or 1001TWO

The number of gallons in a cowboy hat is 10TEN or 1010TWO

and so forth.
In a multidigit binary number, the positions of the digits correspond to

powers of two:

Number of ones
Number of twos
Number of fours
Number of eights
Number of sixteens
Number of thirty-twos

So anytime we have a binary number composed of a 1 followed by all ze-
ros, that number is a power of two. The power is the same as the number
of zeros in the binary number. Here’s our expanded table of the powers of
two demonstrating this rule:

Alternatives to Ten 63

Power of Two Decimal Octal Quaternary Binary
20 1 1 1 1
21 2 2 2 10
22 4 4 10 100
23 8 10 20 1000
24 16 20 100 10000
25 32 40 200 100000
26 64 100 1000 1000000
27 128 200 2000 10000000
28 256 400 10000 100000000
29 512 1000 20000 1000000000

210 1024 2000 100000 10000000000
211 2048 4000 200000 100000000000
212 4096 10000 1000000 1000000000000

Let’s say we have the binary number 101101011010. This can be writ-
ten as

101101011010TWO = 1 × 2048TEN +
0 × 1024TEN +
1 × 512TEN +
1 × 256TEN +
0 × 128TEN +
1 × 64TEN +
0 × 32TEN +
1 × 16TEN +
1 × 8TEN +
0 × 4TEN +
1 × 2TEN +
0 × 1TEN

The same number can be written this way:

101101011010TWO = 1 × 211 +
0 × 210 +
1 × 29 +
1 × 28 +
0 × 27 +
1 × 26 +
0 × 25 +
1 × 24 +
1 × 23 +
0 × 22 +
1 × 21 +
0 × 20

64 Chapter Eight

If we just add up the parts in decimal, we get 2048 + 512 + 256 + 64 + 16
+ 8 + 2, which is 2,906TEN.

To convert binary numbers to decimal more concisely, you might prefer
a method that uses a template I’ve prepared:

x128

+
x64 x32 x16 x8 x4 x2 x1

+ + + + + + =

This template allows you to convert numbers up to eight binary digits in
length, but it could easily be extended. To use it, put up to eight binary digits
in the 8 boxes at the top, one digit to a box. Do the eight multiplications and
put the products in the 8 lower boxes. Add these eight boxes for the final
result. This example shows how to find the decimal equivalent of 10010110:

x128

+
x64 x32 x16 x8 x4 x2 x1

+ + + + + + =

1 0 0 1 0 1 1 0

128 0 0 16 0 4 2 0 150

Converting from decimal to binary isn’t quite as straightforward, but
here’s a template that let’s you convert decimal numbers from 0 through
255 to binary:

128 64 32 16 8 4 2 1

The conversion is actually trickier than it appears, so follow the directions
carefully. Put the entire decimal number (less than or equal to 255) in the
box in the upper left corner. Divide that number (the dividend) by the first
divisor (128), as indicated. Put the quotient in the box below (the box at the
lower left corner), and the remainder in the box to the right (the second box
on the top row). That first remainder is the dividend for the next calculation,
which uses a divisor of 64. Continue in the same manner through the template.

Keep in mind that each quotient will be either 0 or 1. If the dividend is
less than the divisor, the quotient is 0 and the remainder is simply the dividend.
If the dividend is greater than or equal to the divisor, the quotient is 1 and the
remainder is the dividend minus the divisor. Here’s how it’s done with 150:

128 64 32 16 8 4 2 1

150 22 22 22 6 6 2 0

0 0 1 0 1 1 01

Alternatives to Ten 65

If you need to add or multiply two binary numbers, it’s probably easier
to do the calculation in binary rather than convert to decimal. This is the
part you’re really going to like. Imagine how quickly you could have mas-
tered addition if the only thing you had to memorize was this:

+ 0 1

0 0 1

1 1 10

Let’s use this table to add two binary numbers:

1100101
+ 0110110
10011011

Starting at the right column: 1 plus 0 equals 1. Second column from right: 0
plus 1 equals 1. Third column: 1 plus 1 equals 0, carry the 1. Fourth column:
1 (carried) plus 0 plus 0 equals 1. Fifth column: 0 plus 1 equals 1. Sixth col-
umn: 1 plus 1 equals 0, carry the 1. Seventh column: 1 (carried) plus 1 plus
0 equals 10.

The multiplication table is even simpler than the addition table because
it can be entirely derived by using two of the very basic rules of multiplica-
tion: Multiplying anything by 0 gets you 0, and multiplying any number by
1 has no effect on the number.

x 0 1

0 0 0

1 0 1

Here’s a multiplication of 13TEN by 11TEN in binary:

1101
× 1011

1101
1101

0000
1101

10001111

The result is 143TEN.

66 Chapter Eight

People who work with binary numbers often write them with leading zeros
(that is, zeros to the left of the first 1)—for example, 0011 rather than just
11. This doesn’t change the value of the number at all; it’s just for cosmetic
purposes. For example, here are the first sixteen binary numbers with their
decimal equivalents:

Binary Decimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Let’s take a look at this list of binary numbers for a moment. Consider
each of the four vertical columns of zeros and ones, and notice how the digits
alternate going down the column:

• The rightmost digit alternates between 0 and 1.
• The next digit from the right alternates between two 0s and

two 1s.
• The next digit alternates between four 0s and four 1s.
• The next digit alternates between eight 0s and eight 1s.

This is very methodical, wouldn’t you say? Indeed, you can easily write the
next sixteen binary numbers by just repeating the first sixteen and putting
a 1 in front:

Alternatives to Ten 67

Binary Decimal
10000 16
10001 17
10010 18
10011 19
10100 20
10101 21
10110 22
10111 23
11000 24
11001 25
11010 26
11011 27
11100 28
11101 29
11110 30
11111 31

Here’s another way of looking at it: When you count in binary, the
rightmost digit (also called the least significant digit), alternates between 0
and 1. Every time it changes from a 1 to a 0, the digit second to right (that
is, the next most significant digit) also changes, either from 0 to 1 or from
1 to 0. So every time a binary digit changes from a 1 to a 0, the next most
significant digit also changes, either from a 0 to a 1 or from a 1 to a 0.

When we’re writing large decimal numbers, we use commas every three
places so that we can more easily know what the number means at a glance.
For example, if you see 12000000, you probably have to count digits, but
if you see 12,000,000, you know that means twelve million.

Binary numbers can get very long very quickly. For example, twelve mil-
lion in binary is 101101110001101100000000. To make this a little more
readable, it’s customary to separate every four binary digits with a dash, for
example 1011-0111-0001-1011-0000-0000 or with spaces: 1011 0111 0001
1011 0000 0000. Later on in this book, we’ll look at a more concise way
of expressing binary numbers.

By reducing our number system to just the binary digits 0 and 1, we’ve
gone as far as we can go. We can’t get any simpler. Moreover, the binary
number system bridges the gap between arithmetic and electricity. In
previous chapters, we’ve been looking at switches and wires and lightbulbs
and relays, and any of these objects can represent the binary digits 0 and 1:

A wire can be a binary digit. If current is flowing through the wire, the
binary digit is 1. If not, the binary digit is 0.

A switch can be a binary digit. If the switch is on, or closed, the binary
digit is 1. If the switch is off, or open, the binary digit is 0.

A lightbulb can be a binary digit. If the lightbulb is lit, the binary digit
is 1. If the lightbulb is not lit, the binary digit is 0.

68 Chapter Eight

A telegraph relay can be a binary digit. If the relay is closed, the binary
digit is 1. If the relay is at rest, the binary digit is 0.

Binary numbers have a whole lot to do with computers.
Sometime around 1948, the American mathematician John Wilder Tukey

(born 1915) realized that the words binary digit were likely to assume a
much greater importance in the years ahead as computers became more
prevalent. He decided to coin a new, shorter word to replace the unwieldy
five syllables of binary digit. He considered bigit and binit but settled instead
on the short, simple, elegant, and perfectly lovely word bit.

69

Chapter Nine

Bit by Bit by Bit

hen Tony Orlando requested in a 1973 song that his beloved “Tie
a Yellow Ribbon Round the Ole Oak Tree,” he wasn’t asking for
elaborate explanations or extended discussion. He didn’t want

any ifs, ands, or buts. Despite the complex feelings and emotional histories
that would have been at play in the real-life situation the song was based
on, all the man really wanted was a simple yes or no. He wanted a yellow
ribbon tied around the tree to mean “Yes, even though you messed up big
time and you’ve been in prison for three years, I still want you back with
me under my roof.” And he wanted the absence of a yellow ribbon to mean
“Don’t even think about stopping here.”

These are two clear-cut, mutually exclusive alternatives. Tony Orlando
did not sing, “Tie half of a yellow ribbon if you want to think about it for
a while” or “Tie a blue ribbon if you don’t love me anymore but you’d still
like to be friends.” Instead, he made it very, very simple.

Equally effective as the absence or presence of a yellow ribbon (but per-
haps more awkward to put into verse) would be a choice of traffic signs in
the front yard: Perhaps “Merge” or “Wrong Way.”

Or a sign hung on the door: “Closed” or “Open.”
Or a flashlight in the window, turned on or off.
You can choose from lots of ways to say yes or no if that’s all you need

to say. You don’t need a sentence to say yes or no; you don’t need a word,
and you don’t even need a letter. All you need is a bit, and by that I mean
all you need is a 0 or a 1.

As we discovered in the previous chapters, there’s nothing really all that
special about the decimal number system that we normally use for count-
ing. It’s pretty clear that we base our number system on ten because that’s

W

70 Chapter Nine

the number of fingers we have. We could just as reasonably base our num-
ber system on eight (if we were cartoon characters) or four (if we were lob-
sters) or even two (if we were dolphins).

But there is something special about the binary number system. What’s
special about binary is that it’s the simplest number system possible. There
are only two binary digits—0 and 1. If we want something simpler than
binary, we’ll have to get rid of the 1, and then we’ll be left with just a 0. We
can’t do much of anything with just a 0.

The word bit, coined to mean binary digit, is surely one of the loveliest
words invented in connection with computers. Of course, the word has the
normal meaning, “a small portion, degree, or amount,” and that normal
meaning is perfect because a bit—one binary digit—is a very small quantity
indeed.

Sometimes when a new word is invented, it also assumes a new meaning.
That’s certainly true in this case. A bit has a meaning beyond the binary digits
used by dolphins for counting. In the computer age, the bit has come to be
regarded as the basic building block of information.

Now that’s a bold statement, and of course, bits aren’t the only things that
convey information. Letters and words and Morse code and Braille and
decimal digits convey information as well. The thing about the bit is that it
conveys very little information. A bit of information is the tiniest amount
of information possible. Anything less than a bit is no information at all. But
because a bit represents the smallest amount of information possible, more
complex information can be conveyed with multiple bits. (By saying that a
bit conveys a “small” amount of information, I surely don’t mean that the
information borders on the unimportant. Indeed, the yellow ribbon is a very
important bit to the two people concerned with it.)

“Listen, my children, and you shall hear / Of the midnight ride of Paul
Revere,” wrote Henry Wadsworth Longfellow, and while he might not have
been historically accurate when describing how Paul Revere alerted the
American colonies that the British had invaded, he did provide a thought-
provoking example of the use of bits to communicate important information:

He said to his friend “If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry arch

Of the North Church tower as a special light,—
One, if by land, and two, if by sea…”

To summarize, Paul Revere’s friend has two lanterns. If the British are in-
vading by land, he will put just one lantern in the church tower. If the Brit-
ish are coming by sea, he will put both lanterns in the church tower.

However, Longfellow isn’t explicitly mentioning all the possibilities. He
left unspoken a third possibility, which is that the British aren’t invading just
yet. Longfellow implies that this possibility will be conveyed by the absence
of lanterns in the church tower.

Bit by Bit by Bit 71

Let’s assume that the two lanterns are actually permanent fixtures in the
church tower. Normally they aren’t lit:

This means that the British aren’t yet invading. If one of the lanterns is lit,

 or

the British are coming by land. If both lanterns are lit,

the British are coming by sea.
Each lantern is a bit. A lit lantern is a 1 bit and an unlit lantern is a 0 bit.

Tony Orlando demonstrated to us that only one bit is necessary to convey
one of two possibilities. If Paul Revere needed only to be alerted that the

72 Chapter Nine

British were invading (and not where they were coming from), one lantern
would have been sufficient. The lantern would have been lit for an invasion
and unlit for another evening of peace.

Conveying one of three possibilities requires another lantern. Once that
second lantern is present, however, the two bits allows communicating one
of four possibilities:

00 = The British aren’t invading tonight.
01 = They’re coming by land.
10 = They’re coming by land.
11 = They’re coming by sea.

What Paul Revere did by sticking to just three possibilities was actually
quite sophisticated. In the lingo of communication theory, he used redun-
dancy to counteract the effect of noise. The word noise is used in commu-
nication theory to refer to anything that interferes with communication.
Static on a telephone line is an obvious example of noise that interferes with
a telephone communication. Communication over the telephone is usually
successful, nevertheless, even in the presence of noise because spoken lan-
guage is heavily redundant. We don’t need to hear every syllable of every
word in order to understand what’s being said.

In the case of the lanterns in the church tower, noise can refer to the
darkness of the night and the distance of Paul Revere from the tower, both
of which might prevent him from distinguishing one lantern from the other.
Here’s the crucial passage in Longfellow’s poem:

And lo! As he looks, on the belfry’s height
A glimmer, and then a gleam of light!

He springs to the saddle, the bridle he turns,
But lingers and gazes, till full on his sight

A second lamp in the belfry burns!

It certainly doesn’t sound as if Paul Revere was in a position to figure out
exactly which one of the two lanterns was first lit.

The essential concept here is that information represents a choice among
two or more possibilities. For example, when we talk to another person,
every word we speak is a choice among all the words in the dictionary. If
we numbered all the words in the dictionary from 1 through 351,482, we
could just as accurately carry on conversations using the numbers rather than
words. (Of course, both participants would need dictionaries where the
words are numbered identically, as well as plenty of patience.)

The flip side of this is that any information that can be reduced to a choice
among two or more possibilities can be expressed using bits. Needless to say,
there are plenty of forms of human communication that do not represent
choices among discrete possibilities and that are also vital to our existence.
This is why people don’t form romantic relationships with computers. (Let’s
hope they don’t, anyway.) If you can’t express something in words, pictures,
or sounds, you’re not going to be able to encode the information in bits. Nor
would you want to.

Bit by Bit by Bit 73

A thumb up or a thumb down is one bit of information. And two thumbs
up or down—such as the thumbs of film critics Roger Ebert and the late Gene
Siskel when they rendered their final verdicts on the latest movies—convey
two bits of information. (We’ll ignore what they actually had to say about
the movies; all we care about here are their thumbs.) Here we have four
possibilities that can be represented with a pair of bits:

00 = They both hated it.
01 = Siskel hated it; Ebert loved it.
10 = Siskel loved it; Ebert hated it.
11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if he
liked it. Similarly, the second bit is the Ebert bit.

So if your friend asked you, “What was the verdict from Siskel and Ebert
about that movie Impolite Encounter?” instead of answering, “Siskel gave
it a thumbs up and Ebert gave it a thumbs down” or even “Siskel liked it;
Ebert didn’t,” you could have simply said, “One zero.” As long as your friend
knew which was the Siskel bit and which was the Ebert bit, and that a 1 bit
meant thumbs up and a 0 bit meant thumbs down, your answer would be
perfectly understandable. But you and your friend have to know the code.

We could have declared initially that a 1 bit meant a thumbs down and
a 0 bit meant a thumbs up. That might seem counterintuitive. Naturally, we
like to think of a 1 bit as representing something affirmative and a 0 bit as
the opposite, but it’s really just an arbitrary assignment. The only requirement
is that everyone who uses the code must know what the 0 and 1 bits mean.

The meaning of a particular bit or collection of bits is always understood
contextually. The meaning of a yellow ribbon around a particular oak tree
is probably known only to the person who put it there and the person who’s
supposed to see it. Change the color, the tree, or the date, and it’s just a
meaningless scrap of cloth. Similarly, to get some useful information out of
Siskel and Ebert’s hand gestures, at the very least we need to know what
movie is under discussion.

If you maintained a list of the movies that Siskel and Ebert reviewed and
how they voted with their thumbs, you could add another bit to the mix to
include your own opinion. Adding this third bit increases the number of
different possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.
001 = Siskel hated it; Ebert hated it; I loved it.
010 = Siskel hated it; Ebert loved it; I hated it.
011 = Siskel hated it; Ebert loved it; I loved it.
100 = Siskel loved it; Ebert hated it; I hated it.
101 = Siskel loved it; Ebert hated it; I loved it.
110 = Siskel loved it; Ebert loved it; I hated it.
111 = Siskel loved it; Ebert loved it; I loved it.

74 Chapter Nine

One bonus of using bits to represent this information is that we know that
we’ve accounted for all the possibilities. We know there can be eight and only
eight possibilities and no more or fewer. With 3 bits, we can count only from
zero to seven. There are no more 3-digit binary numbers.

Now, during this description of the Siskel and Ebert bits, you might have
been considering a very serious and disturbing question, and that question
is this: What do we do about Leonard Maltin’s Movie & Video Guide? After
all, Leonard Maltin doesn’t do the thumbs up and thumbs down thing.
Leonard Maltin rates the movies using the more traditional star system.

To determine how many Maltin bits we need, we must first know a few
things about his system. Maltin gives a movie anything from 1 star to 4 stars,
with half stars in between. (Just to make this interesting, he doesn’t actu-
ally award a single star; instead, the movie is rated as a BOMB.) There are
seven possibilities, which means that we can represent a particular rating us-
ing just 3 bits:

000 = BOMB
001 = �½
010 = ��
011 = ��½
100 = ���
101 = ���½
110 = ����

“What about 111?” you may ask. Well, that code doesn’t mean anything.
It’s not defined. If the binary code 111 were used to represent a Maltin rat-
ing, you’d know that a mistake was made. (Probably a computer made the
mistake because people never do.)

You’ll recall that when we had two bits to represent the Siskel and Ebert
ratings, the leftmost bit was the Siskel bit and the rightmost bit was the Ebert
bit. Do the individual bits mean anything here? Well, sort of. If you take the
numeric value of the bit code, add 2, and then divide by 2, that will give you
the number of stars. But that’s only because we defined the codes in a rea-
sonable and consistent manner. We could just as well have defined the codes
this way:

000 = ���
001 = �½
010 = ��½
011 = ����
101 = ��� ½
110 = ��
111 = BOMB

This code is just as legitimate as the preceding code so long as everybody
knows what it means.

Bit by Bit by Bit 75

If Maltin ever encountered a movie undeserving of even a single full star,
he could award a half star. He would certainly have enough codes for the
half-star option. The codes could be redefined like so:

000 = MAJOR BOMB
001 = BOMB
010 = �½
011 = ��
100 = ��½
101 = ���
110 = ���½
111 = ����

But if he then encountered a movie not even worthy of a half star and de-
cided to award no stars (ATOMIC BOMB?), he’d need another bit. No more
3-bit codes are available.

The magazine Entertainment Weekly gives grades, not only for movies
but for television shows, CDs, books, CD-ROMs, Web sites, and much else.
The grades range from A+ straight down to F (although it seems that only
Pauly Shore movies are worthy of that honor). If you count them, you see
13 possible grades. We would need 4 bits to represent these grades:

0000 = F
0001 = D−
0010 = D
0011 = D+
0100 = C−
0101 = C
0110 = C+
0111 = B−
1000 = B
1001 = B+
1010 = A−
1011 = A
1100 = A+

We have three unused codes: 1101, 1110, and 1111, for a grand total of 16.
Whenever we talk about bits, we often talk about a certain number of bits.

The more bits we have, the greater the number of different possibilities we
can convey.

It’s the same situation with decimal numbers, of course. For example, how
many telephone area codes are there? The area code is three decimal digits
long, and if all of them are used (which they aren’t, but we’ll ignore that),
there are 103, or 1000, codes, ranging from 000 through 999. How many

76 Chapter Nine

7-digit phone numbers are possible within the 212 area code? That’s 107, or
10,000,000. How many phone numbers can you have with a 212 area code
and a 260 prefix? That’s 104, or 10,000.

Similarly, in binary the number of possible codes is always equal to 2 to
the power of the number of bits:

Number of Bits Number of Codes
1 21 = 2
2 22 = 4
3 23 = 8
4 24 = 16
5 25 = 32
6 26 = 64
7 27 = 128
8 28 = 256
9 29 = 512

10 210 = 1024

Every additional bit doubles the number of codes.
If you know how many codes you need, how can you calculate how many

bits you need? In other words, how do you go backward in the preceding
table?

The method you use is something called the base two logarithm. The
logarithm is the opposite of the power. We know that 2 to the 7th power
equals 128. The base two logarithm of 128 equals 7. To use more mathemati-
cal notation, this statement

27 = 128

is equivalent to this statement:

log2128 = 7

So if the base two logarithm of 128 is 7, and the base two logarithm of 256
is 8, then what’s the base two logarithm of 200? It’s actually about 7.64, but
we really don’t have to know that. If we needed to represent 200 different
things with bits, we’d need 8 bits.

Bits are often hidden from casual observation deep within our electronic
appliances. We can’t see the bits encoded in our compact discs or in our
digital watches or inside our computers. But sometimes the bits are in clear
view.

Here’s one example. If you own a camera that uses 35-millimeter film,
take a look at a roll of film. Hold it this way:

Bit by Bit by Bit 77

1 2 3 4 5 6
7 8 9 10 11 12

You’ll see a checkerboard-like grid of silver and black squares that I’ve
numbered 1 through 12 in the diagram. This is called DX-encoding. These
12 squares are actually 12 bits. A silver square means a 1 bit and a black
square means a 0 bit. Square 1 and square 7 are always silver (1).

What do the bits mean? You might be aware that some films are more
sensitive to light than others. This sensitivity to light is often called the film
speed. A film that’s very sensitive to light is said to be fast because it can be
exposed very quickly. The speed of the film is indicated by the film’s ASA
(American Standards Association) rating, the most popular being 100, 200,
and 400. This ASA rating isn’t only printed on the box and the film’s cas-
sette but is also encoded in bits.

There are 24 standard ASA ratings for photographic film. Here they are:

25 32 40
50 64 80
100 125 160
200 250 320
400 500 640
800 1000 1250
1600 2000 2500
3200 4000 5000

How many bits are required to encode the ASA rating? The answer is 5. We
know that 24 equals 16, so that’s too few. But 25 equals 32, which is more
than sufficient.

78 Chapter Nine

The bits that correspond to the film speed are shown in the following table:

Film
Square 2 Square 3 Square 4 Square 5 Square 6 Speed

0 0 0 1 0 25

0 0 0 0 1 32

0 0 0 1 1 40

1 0 0 1 0 50

1 0 0 0 1 64

1 0 0 1 1 80

0 1 0 1 0 100

0 1 0 0 1 125

0 1 0 1 1 160

1 1 0 1 0 200

1 1 0 0 1 250

1 1 0 1 1 320

0 0 1 1 0 400

0 0 1 0 1 500

0 0 1 1 1 640

1 0 1 1 0 800

1 0 1 0 1 1000

1 0 1 1 1 1250

0 1 1 1 0 1600

0 1 1 0 1 2000

0 1 1 1 1 2500

1 1 1 1 0 3200

1 1 1 0 1 4000

1 1 1 1 1 5000

Most modern 35-millimeter cameras use these codes. (Exceptions are
cameras on which you must set the exposure manually and cameras that have
built-in light meters but require you to set the film speed manually.) If you
take a look inside the camera where you put the film, you should see six metal
contacts that correspond to squares 1 through 6 on the film canister. The
silver squares are actually the metal of the film cassette, which is a conduc-
tor. The black squares are paint, which is an insulator.

Bit by Bit by Bit 79

The electronic circuitry of the camera runs a current into square 1, which
is always silver. This current will be picked up (or not picked up) by the five
contacts on squares 2 through 6, depending on whether the squares are bare
silver or are painted over. Thus, if the camera senses a current on contacts
4 and 5 but not on contacts 2, 3, and 6, the film speed is 400 ASA. The
camera can then adjust film exposure accordingly.

Inexpensive cameras need read only squares 2 and 3 and assume that the
film speed is 50, 100, 200, or 400 ASA.

Most cameras don’t read or use squares 8 through 12. Squares 8, 9, and
10 encode the number of exposures on the roll of film, and squares 11 and
12 refer to the exposure latitude, which depends on whether the film is for
black-and-white prints, for color prints, or for color slides.

Perhaps the most common visual display of binary digits is the ubiqui-
tous Universal Product Code (UPC), that little bar code symbol that appears
on virtually every packaged item that we purchase these days. The UPC has
come to symbolize one of the ways computers have crept into our lives.

Although the UPC often inspires fits of paranoia, it’s really an innocent
little thing, invented for the purpose of automating retail checkout and in-
ventory, which it does fairly successfully. When it’s used with a well-designed
checkout system, the consumer can have an itemized sales receipt, which isn’t
possible with conventional cash registers.

Of interest to us here is that the UPC is a binary code, although it might
not seem like one at first. So it will be instructive to decode the UPC and
examine how it works.

In its most common form, the UPC is a collection of 30 vertical black bars
of various widths, divided by gaps of various widths, along with some dig-
its. For example, this is the UPC that appears on the 10 3/4-ounce can of
Campbell’s Chicken Noodle Soup:

0 7000 0125115

We’re tempted to try to visually interpret the UPC in terms of thin bars
and black bars, narrow gaps and wide gaps, and indeed, that’s one way to
look at it. The black bars in the UPC can have four different widths, with
the thicker bars being two, three, and four times the width of the thinnest
bar. Similarly, the wider gaps between the bars are two, three, and four times
the width of the thinnest gap.

80 Chapter Nine

But another way to look at the UPC is as a series of bits. Keep in mind
that the whole bar code symbol isn’t exactly what the scanning wand “sees”
at the checkout counter. The wand doesn’t try to interpret the numbers at
the bottom, for example, because that would require a more sophisticated
computing technique known as optical character recognition, or OCR. In-
stead, the scanner sees just a thin slice of this whole block. The UPC is as
large as it is to give the checkout person something to aim the scanner at.
The slice that the scanner sees can be represented like this:

This looks almost like Morse code, doesn’t it?
As the computer scans this information from left to right, it assigns a 1

bit to the first black bar it encounters, a 0 bit to the next white gap. The
subsequent gaps and bars are read as series of bits 1, 2, 3, or 4 bits in a row,
depending on the width of the gap or the bar. The correspondence of the
scanned bar code to bits is simply:

10100011010110001001100100011010001101000110101010111001011001101101100100111011001101000100101

So the entire UPC is simply a series of 95 bits. In this particular example,
the bits can be grouped as follows:

Bits Meaning

101 Left-hand guard pattern

0001101

0110001

0011001

0001101
Left-side digits

0001101

0001101

01010 Center guard pattern

1110010

1100110

1101100
Right-side digits

1001110

1100110

1000100

101 Right-hand guard pattern

The first 3 bits are always 101. This is known as the left-hand guard pattern,
and it allows the computer-scanning device to get oriented. From the guard
pattern, the scanner can determine the width of the bars and gaps that cor-
respond to single bits. Otherwise, the UPC would have to be a specific size
on all packages.

Bit by Bit by Bit 81

The left-hand guard pattern is followed by six groups of 7 bits each.
Each of these is a code for a numeric digit 0 through 9, as I’ll demonstrate
shortly. A 5-bit center guard pattern follows. The presence of this fixed
pattern (always 01010) is a form of built-in error checking. If the computer
scanner doesn’t find the center guard pattern where it’s supposed to be, it
won’t acknowledge that it has interpreted the UPC. This center guard pat-
tern is one of several precautions against a code that has been tampered with
or badly printed.

The center guard pattern is followed by another six groups of 7 bits each,
which are then followed by a right-hand guard pattern, which is always 101.
As I’ll explain later, the presence of a guard pattern at the end allows the UPC
code to be scanned backward (that is, right to left) as well as forward.

So the entire UPC encodes 12 numeric digits. The left side of the UPC
encodes 6 digits, each requiring 7 bits. You can use the following table to
decode these bits:

Left-Side Codes
0001101 = 0 0110001 = 5
0011001 = 1 0101111 = 6
0010011 = 2 0111011 = 7
0111101 = 3 0110111 = 8
0100011 = 4 0001011 = 9

Notice that each 7-bit code begins with a 0 and ends with a 1. If the scan-
ner encounters a 7-bit code on the left side that begins with a 1 or ends with
a 0, it knows either that it hasn’t correctly read the UPC code or that the
code has been tampered with. Notice also that each code has only two groups
of consecutive 1 bits. This implies that each digit corresponds to two verti-
cal bars in the UPC code.

You’ll see that each code in this table has an odd number of 1 bits. This
is another form of error and consistency checking known as parity. A group
of bits has even parity if it has an even number of 1 bits and odd parity if
it has an odd number of 1 bits. Thus, all of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the fol-
lowing table:

Right-Side Codes
1110010 = 0 1001110 = 5
1100110 = 1 1010000 = 6
1101100 = 2 1000100 = 7
1000010 = 3 1001000 = 8
1011100 = 4 1110100 = 9

82 Chapter Nine

These codes are the complements of the earlier codes: Wherever a 0 appeared
is now a 1, and vice versa. These codes always begin with a 1 and end with
a 0. In addition, they have an even number of 1 bits, which is even parity.

So now we’re equipped to decipher the UPC. Using the two preceding
tables, we can determine that the 12 digits encoded in the 10 3/4-ounce can of
Campbell’s Chicken Noodle Soup are

0 51000 01251 7

This is very disappointing. As you can see, these are precisely the same
numbers that are conveniently printed at the bottom of the UPC. (This makes
a lot of sense because if the scanner can’t read the code for some reason, the
person at the register can manually enter the numbers. Indeed, you’ve un-
doubtedly seen this happen.) We didn’t have to go through all that work to
decode them, and moreover, we haven’t come close to decoding any secret
information. Yet there isn’t anything left in the UPC to decode. Those 30
vertical lines resolve to just 12 digits.

The first digit (a 0 in this case) is known as the number system charac-
ter. A 0 means that this is a regular UPC code. If the UPC appeared on vari-
able-weight grocery items such as meat or produce, the code would be a 2.
Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case, 51000
is the code for the Campbell Soup Company. All Campbell products have
this code. The five digits that follow (01251) are the code for a particular
product of that company, in this case, the code for a 10 3/4-ounce can of
chicken noodle soup. This product code has meaning only when combined
with the manufacturer’s code. Another company’s chicken noodle soup might
have a different product code, and a product code of 01251 might mean
something totally different from another manufacturer.

Contrary to popular belief, the UPC doesn’t include the price of the item.
That information has to be retrieved from the computer that the store uses
in conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check character. This
character enables yet another form of error checking. To examine how this
works, let’s assign each of the first 11 digits (0 51000 01251 in our example)
a letter:

A BCDEF GHIJK

Now calculate the following:

3 × (A + C + E + G + I + K) + (B + D + F + H + J)

and subtract that from the next highest multiple of 10. That’s called the
modulo check character. In the case of Campbell’s Chicken Noodle Soup,
we have

3 × (0 + 1 + 0 + 0 + 2 + 1) + (5 + 0 + 0 + 1 + 5) = 3 × 4 + 11 = 23

Bit by Bit by Bit 83

The next highest multiple of 10 is 30, so

30 − 23 = 7

and that’s the modulo check character printed and encoded in the UPC. This
is a form of redundancy. If the computer controlling the scanner doesn’t
calculate the same modulo check character as the one encoded in the UPC,
the computer won’t accept the UPC as valid.

Normally, only 4 bits would be required to specify a decimal digit from
0 through 9. The UPC uses 7 bits per digit. Overall, the UPC uses 95 bits to
encode only 11 useful decimal digits. Actually, the UPC includes blank space
(equivalent to nine 0 bits) at both the left and the right side of the guard
pattern. That means the entire UPC requires 113 bits to encode 11 decimal
digits, or over 10 bits per decimal digit!

Part of this overkill is necessary for error checking, as we’ve seen. A prod-
uct code such as this wouldn’t be very useful if it could be easily altered by
a customer wielding a felt-tip pen.

The UPC also benefits by being readable in both directions. If the first
digits that the scanning device decodes have even parity (that is, an even
number of 1 bits in each 7-bit code), the scanner knows that it’s interpret-
ing the UPC code from right to left. The computer system then uses this table
to decode the right-side digits:

Right-Side Codes in Reverse
0100111 = 0 0111001 = 5
0110011 = 1 0000101 = 6
0011011 = 2 0010001 = 7
0100001 = 3 0001001 = 8
0011101 = 4 0010111 = 9

and this table for the left-side digits:

Left-Side Codes in Reverse
1011000 = 0 1000110 = 5
1001100 = 1 1111010 = 6
1100100 = 2 1101110 = 7
1011110 = 3 1110110 = 8
1100010 = 4 1101000 = 9

These 7-bit codes are all different from the codes read when the UPC is
scanned from left to right. There’s no ambiguity.

We began looking at codes in this book with Morse code, composed of
dots, dashes, and pauses between the dots and dashes. Morse code doesn’t
immediately seem like it’s equivalent to zeros and ones, yet it is.

Recall the rules of Morse code: A dash is three times as long as a dot. The
dots and dashes of a single letter are separated by a pause the length of a

84 Chapter Nine

dot. Letters within a word are separated by pauses equal in length to a dash.
Words are separated by pauses equal in length to two dashes.

Just to simplify this analysis a bit, let’s assume that a dash is twice the
length of a dot rather than three times. That means that a dot can be a 1 bit
and a dash can be two 1 bits. Pauses are 0 bits.

Here’s the basic table of Morse code from Chapter 2:

A

B

C

D

E

F

G

H

I

S

T

U

V

W

X

Y

Z

J

K

L

M

N

O

P

Q

R

Here’s the table converted to bits:

A 101100

B 1101010100

C 11010110100

D 11010100

E 100

F 1010110100

G 110110100

H 101010100

I 10100

O 1101101100

P 10110110100

Q 110110101100

R 10110100

J 101101101100

K 110101100

L 1011010100

M 1101100

N 110100

S 1010100

T 1100

U 10101100

V 1010101100

W 101101100

X 11010101100

Y 110101101100

Z 11011010100

Notice that all the codes begin with a 1 bit and end with a pair of 0 bits. The
pair of 0 bits represents the pause between letters in the same word. The code
for the space between words is another pair of 0 bits. So the Morse code for
“hi there” is normally given as

but Morse code using bits can look like the cross section of the UPC code:

101010100101000011001010101001001011010010000

Bit by Bit by Bit 85

In terms of bits, Braille is much simpler than Morse code. Braille is a 6-
bit code. Each character is represented by an array of six dots, and each of
the six dots can be either raised or not raised. As I explained in Chapter 3,
the dots are commonly numbered 1 through 6:

1

2

3

4

5

6

The word “code” (for example) is represented by the Braille symbols:

If a raised dot is 1 and a flat dot is 0, each of the characters in Braille can
be represented by a 6-bit binary number. The four Braille symbols for the
letters in the word “code” are then simply:

100100 101010 100110 100010

where the leftmost bit corresponds to the 1 position in the grid, and the
rightmost bit corresponds to the 6 position.

As we shall see later in this book, bits can represent words, pictures,
sounds, music, and movies as well as product codes, film speeds, movie
ratings, an invasion of the British army, and the intentions of one’s beloved.
But most fundamentally, bits are numbers. All that needs to be done when
bits represent other information is to count the number of possibilities. This
determines the number of bits that are needed so that each possibility can
be assigned a number.

Bits also play a part in logic, that strange blend of philosophy and math-
ematics for which a primary goal is to determine whether certain statements
are true or false. True and false can also be 1 and 0.

86

Chapter Ten

Logic and Switches

hat is truth? Aristotle thought that logic had something to do
with it. The collection of his teachings known as the Organon
(which dates from the fourth century B.C.E.) is the earliest ex-

tensive writing on the subject of logic. To the ancient Greeks, logic was a
means of analyzing language in the search for truth and thus was consid-
ered a form of philosophy. The basis of Aristotle’s logic was the syllogism.
The most famous syllogism (which isn’t actually found in the works of
Aristotle) is

All men are mortal;
Socrates is a man;

Hence, Socrates is mortal.

In a syllogism, two premises are assumed to be correct, and from these a
conclusion is deduced.

The mortality of Socrates might seem straightforward enough, but there
are many varieties of syllogisms. For example, consider the following two
premises, proposed by the nineteenth-century mathematician Charles
Dodgson (also known as Lewis Carroll):

All philosophers are logical;
An illogical man is always obstinate.

The conclusion isn’t obvious at all. (It’s “Some obstinate persons are not
philosophers.” Notice the unexpected and disturbing appearance of the
word “some.”)

W

Logic and Switches 87

For over two thousand years, mathematicians wrestled with Aristotle’s
logic, attempting to corral it using mathematical symbols and operators.
Prior to the nineteenth century, the only person to come close was Gottfried
Wilhelm von Leibniz (1648–1716), who dabbled with logic early in life but
then went on to other interests (such as independently inventing calculus at
the same time as Isaac Newton).

And then came George Boole.
George Boole was born in England in 1815

to a world where the odds were certainly stacked
against him. Because he was the son of a shoe-
maker and a former maid, Britain’s rigid class
structure would normally have prevented Boole
from achieving anything much different from
his ancestors. But aided by an inquisitive mind
and his helpful father (who had strong interests
in science, mathematics, and literature), young
George gave himself the type of education nor-
mally the privilege of upper-class boys; his stud-
ies included Latin, Greek, and mathematics. As
a result of his early papers on mathematics, in
1849 Boole was appointed the first Professor of
Mathematics at Queen’s College, Cork, in Ireland.

Several mathematicians in the mid-1800s had been working on a math-
ematical definition of logic (most notably Augustus De Morgan), but it was
Boole who had the real conceptual breakthrough, first in the short book The
Mathematical Analysis of Logic, Being an Essay Towards a Calculus of
Deductive Reasoning (1847) and then in a much longer and more ambitious
text, An Investigation of the Laws of Thought on Which Are Founded the
Mathematical Theories of Logic and Probabilities (1854), more conveniently
referred to as The Laws of Thought. Boole died in 1864 at the age of 49 after
hurrying to class in the rain and contracting pneumonia.

The title of Boole’s 1854 book suggests an ambitious motivation: Because
the rational human brain uses logic to think, if we were to find a way in
which logic can be represented by mathematics, we would also have a math-
ematical description of how the brain works. Of course, nowadays this view
of the mind seems to us quite naive. (Either that or it’s way ahead of its time.)

Boole invented a kind of algebra that looks and acts very much like con-
ventional algebra. In conventional algebra, the operands (which are usually
letters) stand for numbers, and the operators (most often + and ×) indicate
how these numbers are to be combined. Often we use conventional algebra
to solve problems such as this: Anya has 3 pounds of tofu. Betty has twice
as much tofu as Anya. Carmen has 5 pounds more tofu than Betty. Deirdre
has three times the tofu that Carmen has. How much tofu does Deirdre have?

88 Chapter Ten

To solve this problem, we first convert the English to arithmetical state-
ments, using four letters to stand for the pounds of tofu that each of the four
women has:

A = 3
B = 2 × A
C = B + 5
D = 3 × C

We can combine these four statements into one statement by substitution and
then finally perform the additions and multiplications:

D = 3 × C
D = 3 × (B + 5)
D = 3 × ((2 × A) + 5)
D = 3 × ((2 × 3) + 5)
D = 33

When we do conventional algebra, we follow certain rules. These rules
have probably become so ingrained in our practice that we no longer think
of them as rules and might even forget their names. But rules indeed under-
lie all the workings of any form of mathematics.

The first rule is that addition and multiplication are commutative. That
means we can switch around the symbols on each side of the operations:

A + B = B + A
A × B = B × A

By contrast, subtraction and division are not commutative.
Addition and multiplication are also associative, that is

A + (B + C) = (A + B) + C
A × (B × C) = (A × B) × C

And finally, multiplication is said to be distributive over addition:

A × (B + C) = (A × B) + (A × C)

Another characteristic of conventional algebra is that it always deals with
numbers, such as pounds of tofu or numbers of ducks or distances that a train
travels or the ages of family members. It was Boole’s genius to make alge-
bra more abstract by divorcing it from concepts of number. In Boolean al-
gebra (as Boole’s algebra was eventually called), the operands refer not to
numbers but instead to classes. A class is simply a group of things, what in
later times came to be known as a set.

Let’s talk about cats. Cats can be either male or female. For convenience,
we can use the letter M to refer to the class of male cats and F to refer to
the class of female cats. Keep in mind that these two symbols do not represent

Logic and Switches 89

numbers of cats. The number of male and female cats can change by the
minute as new cats are born and old cats (regrettably) pass away. The let-
ters stand for classes of cats—cats with specific characteristics. Instead of
referring to male cats, we can just say “M.”

We can also use other letters to represent the color of the cats: For ex-
ample, T can refer to the class of tan cats, B can be the class of black cats,
W the class of white cats, and O the class of cats of all “other” colors—all
cats not in the class T, B, or W.

Finally (at least as far as this example goes), cats can be either neutered
or unneutered. Let’s use the letter N to refer to the class of neutered cats and
U for the class of unneutered cats.

In conventional (numeric) algebra, the operators + and × are used to in-
dicate addition and multiplication. In Boolean algebra, the same + and ×
symbols are used, and here’s where things might get confusing. Everybody
knows how to add and multiply numbers in conventional algebra, but how
do we add and multiply classes?

Well, we don’t actually add and multiply in Boolean algebra. Instead, the
+ and × symbols mean something else entirely.

The + symbol in Boolean algebra means a union of two classes. A union
of two classes is everything in the first class combined with everything in the
second class. For example, B + W represents the class of all cats that are either
black or white.

The × symbol in Boolean algebra means an intersection of two classes.
An intersection of two classes is everything that is in both the first class and
the second class. For example, F × T represents the class of all cats that are
both female and tan. As in conventional algebra, we can write F × T as F·T
or simply FT (which is what Boole preferred). You can think of the two letters
as two adjectives strung together: “female tan” cats.

To avoid confusion between conventional algebra and Boolean algebra,
sometimes the symbols v and u are used for union and intersection instead
of + and ×. But part of Boole’s liberating influence on mathematics was to
make the use of familiar operators more abstract, so I’ve decided to stick with
his decision not to introduce new symbols into his algebra.

The commutative, associative, and distributive rules all hold for Boolean
algebra. What’s more, in Boolean algebra the + operator is distributive over
the × operator. This isn’t true of conventional algebra:

W + (B × F) = (W + B) × (W + F)

The union of white cats and black female cats is the same as the intersec-
tion of two unions: the union of white cats and black cats, and the union
of white cats and female cats. This is somewhat difficult to grasp, but it
works.

Two more symbols are necessary to complete Boolean algebra. These two
symbols might look like numbers, but they’re really not because they’re
sometimes treated a little differently than numbers. The symbol 1 in Boolean

90 Chapter Ten

algebra means “the universe”—that is, everything we’re talking about. In
this example, the symbol 1 means “the class of all cats.” Thus,

M + F = 1

This means that the union of male cats and female cats is the class of all cats.
Similarly, the union of tan cats and black cats and white cats and other
colored cats is also the class of all cats:

T + B + W + O = 1

And you achieve the class of all cats this way, too:

N + U = 1

The 1 symbol can be used with a minus sign to indicate the universe
excluding something. For example,

1 − M

is the class of all cats except the male cats. The universe excluding all male
cats is the same as the class of female cats:

1 − M = F

The other symbol that we need is the 0, and in Boolean algebra the 0
means an empty class—a class of nothing. The empty class results when we
take an intersection of two mutually exclusive classes, for example, cats that
are both male and female:

F × M = 0

Notice that the 1 and 0 symbols sometimes work the same way in Bool-
ean algebra as in conventional algebra. For example, the intersection of all
cats and female cats is the class of female cats:

1 × F = F

The intersection of no cats and female cats is the class of no cats:

0 × F = 0

The union of no cats and all female cats is the class of female cats:

0 + F = F

But sometimes the result doesn’t look the same as in conventional alge-
bra. For example, the union of all cats and female cats is the class of all cats:

1 + F = 1

This doesn’t make much sense in conventional algebra.

Logic and Switches 91

Because F is the class of all female cats, and (1 − F) is the class of all cats
that aren’t female, the union of these two classes is 1:

F + (1 − F) = 1

and the intersection of the two classes is 0:

F × (1 − F) = 0

Historically, this formulation represents an important concept in logic: It’s
called the Law of Contradiction and indicates that something can’t be both
itself and the opposite of itself.

Where Boolean algebra really looks different from conventional algebra
is in a statement like this:

F × F = F

The statement makes perfect sense in Boolean algebra: The intersection of
female cats and female cats is still the class of female cats. But it sure wouldn’t
look quite right if F referred to a number. Boole considered

X2 = X

to be the single statement that differentiates his algebra from conventional
algebra. Another Boolean statement that looks funny in terms of conven-
tional algebra is this:

F + F = F

The union of female cats and female cats is still the class of female cats.
Boolean algebra provides a mathematical method for solving the syllo-

gisms of Aristotle. Let’s look at the first two-thirds of that famous syllogism
again, but now using gender-neutral language:

All persons are mortal;
Socrates is a person.

We’ll use P to represent the class of all persons, M to represent the class of
mortal things, and S to represent the class of Socrates. What does it mean
to say that “all persons are mortal”? It means that the intersection of the
class of all persons and the class of all mortal things is the class of all persons:

P × M = P

It would be wrong to say that P × M = M, because the class of all mortal
things includes cats, dogs, and elm trees.

To say, “Socrates is a person,” means that the intersection of the class
containing Socrates (a very small class) and the class of all persons (a much
larger class) is the class containing Socrates:

S × P = S

92 Chapter Ten

Because we know from the first equation that P equals (P × M) we can
substitute that into the second equation:

S × (P × M) = S

By the associative law, this is the same as

(S × P) × M = S

But we already know that (S × P) equals S, so we can simplify by using this
substitution:

S × M = S

And now we’re finished. This formula tells us that the intersection of Soc-
rates and the class of all mortal things is S, which means that Socrates is
mortal. If we found instead that (S × M) equaled 0, we’d conclude that
Socrates wasn’t mortal. If we found that (S × M) equaled M, the conclusion
would have to be that Socrates was the only mortal thing and everything else
was immortal!

Using Boolean algebra might seem like overkill for proving the obvious
fact (particularly considering that Socrates proved himself mortal 2400 years
ago), but Boolean algebra can also be used to determine whether something
satisfies a certain set of criteria. Perhaps one day you walk into a pet shop
and say to the salesperson, “I want a male cat, neutered, either white or tan;
or a female cat, neutered, any color but white; or I’ll take any cat you have
as long as it’s black.” And the salesperson says to you, “So you want a cat
from the class of cats represented by the following expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Right?” And you say, “Yes! Exactly!”
In verifying that the salesperson is correct, you might want to forgo the

concepts of union and intersection and instead switch to the words OR and
AND. I’m capitalizing these words because the words normally represent
concepts in English, but they can also represent operations in Boolean al-
gebra. When you form a union of two classes, you’re actually accepting
things from the first class OR the second class. And when you form an in-
tersection, you’re accepting only those things in both the first class AND the
second class. In addition, you can use the word NOT wherever you see a 1
followed by a minus sign. In summary,

• The + (previously known as a union) now means OR.
• The × (previously known as an intersection) now means AND.
• The 1 − (previously the universe without something) now means

NOT.

Logic and Switches 93

So the expression can also be written like this:

(M AND N AND (W OR T)) OR (F AND N AND (NOT W)) OR B

This is very nearly what you said. Notice how the parentheses clarify your
intentions. You want a cat from one of three classes:

(M AND N AND (W OR T))
OR

(F AND N AND (NOT W))
OR
B

With this formula written down, the salesperson can perform something
called a Boolean test. Without making a big fuss about it, I’ve subtly shifted
to a somewhat different form of Boolean algebra. In this form of Boolean
algebra, letters no longer refer to classes. Instead, the letters can now be
assigned numbers. The catch is that they can be assigned only the number 0
or 1. The numeral 1 means Yes, True, this particular cat satisfies these cri-
teria. The numeral 0 means No, False, this cat doesn’t satisfy these criteria.

First the salesperson brings out an unneutered tan male. Here’s the ex-
pression of acceptable cats:

(M × N × (W + T)) + (F × N × (1 − W)) + B

and here’s how it looks with 0s and 1s substituted:

(1 × 0 × (0 + 1)) + (0 × 0 × (1 − 0)) + 0

Notice that the only symbols assigned 1s are M and T because the cat is male
and tan.

What we must do now is simplify this expression. If it simplifies to 1, the
cat satisfies your criteria; if it simplifies to 0, the cat doesn’t. While we’re
simplifying the expression, keep in mind that we’re not really adding and
multiplying, although generally we can pretend that we are. Most of the same
rules apply when + means OR and × means AND. (Sometimes in modern
texts the symbols ∧ and ∨ are used for AND and OR instead of × and +. But
here’s where the + and × signs perhaps make the most sense.)

When the × sign means AND, the possible results are

0 × 0 = 0
0 × 1 = 0
1 × 0 = 0
1 × 1 = 1

In other words, the result is 1 only if both the left operand AND the right
operand are 1. This operation works exactly the same way as regular

94 Chapter Ten

multiplication, and it can be summarized in a little table, similar to the way
the addition and multiplication tables were shown in Chapter 8:

AND 0 1

0 0 0

1 0 1

When the + sign means OR, the possible results are

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

The result is 1 if either the left operand OR the right operand is 1. This
operation produces results very similar to those of regular addition, except
that in this case 1 + 1 equals 1. The OR operation can be summarized in
another little table:

OR 0 1

0 0 1

1 1 1

We’re ready to use these tables to calculate the result of the expression

(1 × 0 × 1) + (0 × 0 × 1) + 0 = 0 + 0 + 0 = 0

The result 0 means No, False, this kitty won’t do.
Next the salesperson brings out a neutered white female. The original

expression was

(M × N × (W + T)) + (F × N × (1 − W)) + B

Substitute the 0s and 1s again:

(0 × 1 × (1 + 0)) + (1 × 1 × (1 − 1)) + 0

And simplify it:

(0 × 1 × 1) + (1 × 1 × 0) + 0 = 0 + 0 + 0 = 0

And another poor kitten must be rejected.
Next the salesperson brings out a neutered gray female. (Gray qualifies

as an “other” color—not white or black or tan.) Here’s the expression:

(0 × 1 × (0 + 0)) + (1 × 1 × (1 − 0)) + 0

Logic and Switches 95

Now simplify it:

(0 × 1 × 0) + (1 × 1 × 1) + 0 = 0 + 1 + 0 = 1

The final result 1 means Yes, True, a kitten has found a home. (And it was
the cutest one too!)

Later that evening, when the kitten is curled up sleeping in your lap, you
wonder whether you could have wired some switches and a lightbulb to help
you determine whether particular kittens satisfied your criteria. (Yes, you
are a strange kid.) Little do you realize that you’re about to make a crucial
conceptual breakthrough. You’re about to perform some experiments that
will unite the algebra of George Boole with electrical circuitry and thus make
possible the design and construction of computers that work with binary
numbers. But don’t let that intimidate you.

To begin your experiment, you connect a lightbulb and battery as you
would normally, but you use two switches instead of one:

Switches connected in this way—one right after the other—are said to be
wired in series. If you close the left switch, nothing happens:

Similarly, if you leave the left switch open and close the right switch, noth-
ing happens. The lightbulb lights up only if both the left switch and the right
switch are closed, as shown on the next page.

96 Chapter Ten

The key word here is and. Both the left switch and the right switch must be
closed for the current to flow through the circuit.

This circuit is performing a little exercise in logic. In effect, the lightbulb
is answering the question “Are both switches closed?” We can summarize
the workings of this circuit in the following table:

Left Switch Right Switch Lightbulb
Open Open Not lit
Open Closed Not lit

Closed Open Not lit
Closed Closed Lit

In the preceding chapter, we saw how binary digits, or bits, can represent
information—everything from numbers to the direction of Roger Ebert’s
thumb. We were able to say that a 0 bit means “Ebert’s thumb points down”
and a 1 bit means “Ebert’s thumb points up.” A switch has two positions,
so it can represent a bit. We can say that a 0 means “switch is open” and a
1 means “switch is closed.” A lightbulb has two states; hence it too can
represent a bit. We can say that a 0 means “lightbulb is not lit” and a 1 means
“lightbulb is lit.” Now we simply rewrite the table:

Left Switch Right Switch Lightbulb
0 0 0
0 1 0
1 0 0
1 1 1

Notice that if we swap the left switch and the right switch, the results are the
same. We really don’t have to identify which switch is which. So the table
can be rewritten to resemble the AND and OR tables that were shown earlier:

0 1

0 0 0

1 0 1

Switches
in Series

Logic and Switches 97

And indeed, this is the same as the AND table. Check it out:

AND 0 1

0 0 0

1 0 1

This simple circuit is actually performing an AND operation in Boolean
algebra.

Now try connecting the two switches a little differently:

These switches are said to be connected in parallel. The difference between
this and the preceding connection is that this lightbulb will light if you close
the top switch:

98 Chapter Ten

or close the bottom switch:

or close both switches:

The lightbulb lights if the top switch or the bottom switch is closed. The key
word here is or.

Again, the circuit is performing an exercise in logic. The lightbulb answers
the question, “Is either switch closed?” The following table summarizes how
this circuit works:

Left Switch Right Switch Lightbulb
Open Open Not lit
Open Closed Lit

Closed Open Lit
Closed Closed Lit

Again, using 0 to mean an open switch or an unlit lightbulb and 1 to mean
a closed switch or a lit lightbulb, this table can be rewritten this way:

Logic and Switches 99

Left Switch Right Switch Lightbulb
0 0 0
0 1 1
1 0 1
1 1 1

Again it doesn’t matter if the two switches are swapped, so the table can also
be rewritten like this:

0 1

0 0 1

1 1 1

Switches
in Parallel

And you’ve probably already guessed that this is the same as the Boolean OR:

OR 0 1

0 0 1

1 1 1

which means that two switches in parallel are performing the equivalent of
a Boolean OR operation.

When you originally entered the pet shop, you told the salesperson, “I
want a male cat, neutered, either white or tan; or a female cat, neutered, any
color but white; or I’ll take any cat you have as long as it’s black,” and the
salesperson developed this expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Now that you know that two switches wired in series perform a logical AND
(which is represented by a × sign) and two switches in parallel perform a
logical OR (which is represented by the + sign), you can wire up eight
switches like so:

W

T

NM

NF W

B

100 Chapter Ten

Each switch in this circuit is labeled with a letter—the same letters as in the
Boolean expression. (W means NOT W and is an alternative way to write
1 − W). Indeed, if you go through the wiring diagram from left to right start-
ing at the top and moving from top to bottom, you’ll encounter the letters
in the same order that they appear in the expression. Each × sign in the
expression corresponds to a point in the circuit where two switches (or
groups of switches) are connected in series. Each + sign in the expression
corresponds to a place in the circuit where two switches (or groups of
switches) are connected in parallel.

As you’ll recall, the salesperson first brought out an unneutered tan male.
Close the appropriate switches:

W

T

NM

NF W

B

Although the M, T, and NOT W switches are closed, we don’t have a com-
plete circuit to light up the lightbulb. Next the salesperson brought out a
neutered white female:

W

T

NM

NF W

B

—

Logic and Switches 101

Again, the right switches aren’t closed to complete a circuit. But finally, the
salesperson brought out a neutered gray female:

W

T

NM

NF W

B

And that’s enough to complete the circuit, light up the lightbulb, and indi-
cate that the kitten satisfies all your criteria.

George Boole never wired such a circuit. He never had the thrill of see-
ing a Boolean expression realized in switches, wires, and lightbulbs. One
obstacle, of course, was that the incandescent lightbulb wasn’t invented until
15 years after Boole’s death. But Samuel Morse had demonstrated his tele-
graph in 1844 —ten years before the publication of Boole’s The Laws of
Thought—and it would be simple to substitute a telegraph sounder for the
lightbulb in the circuit shown above.

But nobody in the nineteenth century made the connection between the
ANDs and ORs of Boolean algebra and the wiring of simple switches in series
and in parallel. No mathematician, no electrician, no telegraph operator,
nobody. Not even that icon of the computer revolution Charles Babbage
(1792–1871), who had corresponded with Boole and knew his work, and
who struggled for much of his life designing first a Difference Engine and
then an Analytical Engine that a century later would be regarded as the
precursors to modern computers. What might have helped Babbage, we
know now, was the realization that perhaps instead of gears and levers to
perform calculations, a computer might better be built out of telegraph relays.

Yes, telegraph relays.

102

Chapter Eleven

Gates (Not Bill)

n some far-off distant time, when the twentieth century history of primi-
tive computing is just a murky memory, someone is likely to suppose
that devices known as logic gates were named after the famous co-

founder of Microsoft Corporation. Not quite. As we’ll soon see, logic gates
bear a much greater resemblance to those ordinary gates through which pass
water or people. Logic gates perform simple tasks in logic by blocking or
letting through the flow of electrical current.

You’ll recall how in the last chapter you went into a pet shop and an-
nounced, “I want a male cat, neutered, either white or tan; or a female cat,
neutered, any color but white; or I’ll take any cat you have as long as it’s
black.” This is summarized by the following Boolean expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

and also by this circuit made up of switches and a lightbulb:

W

T

NM

NF W

B

I

Gates (Not Bill) 103

Such a circuit is sometimes called a network, except that nowadays that word
is used much more often to refer to connected computers rather than an as-
semblage of mere switches.

Although this circuit contains nothing that wasn’t invented in the nine-
teenth century, nobody in that century ever realized that Boolean expressions
could be directly realized in electrical circuits. This equivalence wasn’t dis-
covered until the 1930s, most notably by Claude Elwood Shannon (born
1916), whose famous 1938 M.I.T. master’s thesis was entitled “A Symbolic
Analysis of Relay and Switching Circuits.” (Ten years later, Shannon’s ar-
ticle “The Mathematical Theory of Communication” was the first publica-
tion that used the word bit to mean binary digit.)

Prior to 1938, people knew that when you wired two switches in series,
both switches had to be closed for current to flow, and when you wired two
switches in parallel, one or the other had to be closed. But nobody had shown
with Shannon’s clarity and rigor that electrical engineers could use all the
tools of Boolean algebra to design circuits with switches. In particular, if you
can simplify a Boolean expression that describes a network, you can sim-
plify the network accordingly.

For example, the expression that indicates the characteristics you want
in a cat looks like this:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Using the associative law, we can reorder the variables that are combined
with the AND (×) signs and rewrite the expression this way:

(N × M × (W + T)) + (N × F × (1 − W)) + B

In an attempt to clarify what I’m going to do here, I’ll define two new
symbols named X and Y:

X = M × (W + T)
Y = F × (1 − W)

Now the expression for the cat you want can be written like this:

(N × X) + (N × Y) + B

After we’re finished, we can put the X and Y expressions back in.
Notice that the N variable appears twice in the expression. Using the dis-

tributive law, the expression can be rewritten like this, with only one N:

(N × (X + Y)) + B

Now let’s put the X and Y expressions back in:

(N × ((M × (W + T)) + (F × (1 − W)))) + B

104 Chapter Eleven

Due to the plethora of parentheses, this expression hardly looks simplified.
But there’s one less variable in this expression, which means there’s one less
switch in the network. Here’s the revised version:

W

T

M

N

F W

B

Indeed, it’s probably easier to see that this network is equivalent to the ear-
lier one than to verify that the expressions are the same.

Actually, there are still three too many switches in this network. In theory,
you need only four switches to define your perfect cat. Why four? Each
switch is a bit. You should be able to get by with one switch for the sex (off
for male, on for female), another switch that’s on for neutered, off for
unneutered, and two more switches for the color. There are four possible
colors (white, black, tan, and “other”), and we know that four choices can
be defined with 2 bits, so all you need are two color switches. For example,
both switches can be off for white, one switch on for black, the other switch
on for tan, and both switches on for other colors.

Let’s make a control panel right now for choosing a cat. The control panel
is simply four switches (much like the on/off switches you have on your walls
for controlling your lights) and a lightbulb mounted in a panel:

Dream Kitty

Control Panel

Meow

F

M

N

U

O

W

B T

The switches are on (closed) when they’re up, and off (open) when they’re
down. The two switches for the cat’s color are labeled somewhat obscurely,
I’m afraid, but that’s a drawback of reducing this panel to the bare minimum:
The left switch of the pair is labeled B; that means that the left switch on

Gates (Not Bill) 105

by itself (as shown) indicates the color black. The right switch of the pair is
labeled T; that switch on by itself means the color tan. Both switches up
means other colors; this choice is labeled O. Both switches down means the
color white, indicated by W, the letter at the bottom.

In computer terminology, the switches are an input device. Input is infor-
mation that controls how a circuit behaves. In this case, the input switches
correspond to 4 bits of information that describe a cat. The output device
is the lightbulb. This bulb lights up if the switches describe a satisfactory cat.
The switches shown in the control panel on page 104 are set for a female
unneutered black cat. This satisfies your criteria, so the lightbulb is lit.

Now all we have to do is design a circuit that makes this control panel work.
You’ll recall that Claude Shannon’s thesis was entitled “A Symbolic

Analysis of Relay and Switching Circuits.” The relays he was referring to
were quite similar to the telegraph relays that we encountered in Chapter 6.
By the time of Shannon’s paper, however, relays were being used for other
purposes and, in particular, in the vast network of the telephone system.

Like switches, relays can be connected in series and in parallel to perform
simple tasks in logic. These combinations of relays are called logic gates.
When I say that these logic gates perform simple tasks in logic, I mean as
simple as possible. Relays have an advantage over switches in that relays can
be switched on and off by other relays rather than by fingers. This means
that logic gates can be combined to perform more complex tasks, such as
simple functions in arithmetic. Indeed, the next chapter will demonstrate how
to wire switches, lightbulbs, a battery, and telegraph relays to make an adding
machine (albeit one that works solely with binary numbers).

As you recall, relays were crucial to the workings of the telegraph system.
Over long distances, the wires connecting telegraph stations had a very high
resistance. Some method was needed to receive a weak signal and send an
identical strong signal. The relay did this by using an electromagnet to control
a switch. In effect, the relay amplified a weak signal to create a strong signal.

For our purposes, we’re not interested in using the relay to amplify a weak
signal. We’re interested only in the idea of a relay being a switch that can
be controlled by electricity rather than by fingers. We can wire a relay with
a switch, a lightbulb, and a couple of batteries like this:

106 Chapter Eleven

Notice that the switch at the left is open and the lightbulb is off. When you
close the switch, the battery at the left causes current to flow through the
many turns of wire around the iron bar. The iron bar becomes magnetic and
pulls down a flexible metal contact that connects the circuit to turn on the
lightbulb:

When the electromagnet pulls the metal contact, the relay is said to be trig-
gered. When the switch is turned off, the iron bar stops being magnetic, and
the metal contact returns to its normal position.

This seems like a rather indirect route to light the bulb, and indeed it is.
If we were interested only in lighting the bulb, we could dispense with the
relay entirely. But we’re not interested in lighting bulbs. We have a much
more ambitious goal.

We’re going to be using relays a lot in this chapter (and then hardly at all
after the logic gates have been built), so I want to simplify the diagram. We
can eliminate some of the wires by using a ground. In this case, the grounds
simply represent a common connection; they don’t need to be connected to
the physical earth:

Gates (Not Bill) 107

I know this doesn’t look like a simplification, but we’re not done yet. No-
tice that the negative terminals of both batteries are connected to ground.
So anywhere we see something like this:

let’s replace it with the capital letter V (which stands for voltage), as we did
in Chapters 5 and 6. Now our relay looks like this:

V

V

When the switch is closed, a current flows between V and ground through
the coils of the electromagnet. This causes the electromagnet to pull the flex-
ible metal contact. That connects the circuit between V, the lightbulb, and
ground. The bulb lights up:

V

V

108 Chapter Eleven

These diagrams of the relay show two voltage sources and two grounds,
but in all the diagrams in this chapter, all the V’s can be connected to one
another and all the grounds can be connected to one another. All the net-
works of relays and logic gates in this chapter and the next will require only
one battery, although it might need to be a big battery. For example, the pre-
ceding diagram can be redrawn with only one battery like this:

But for what we need to do with relays, this diagram isn’t very clear. It’s better
to avoid the circular circuits and look at the relay—like the control panel
earlier—in terms of inputs and outputs:

“Output”
or “Out”

V

“Input”
or “In”

If a current is flowing through the input (for example, if a switch connects
the input to V), the electromagnet is triggered and the output has a voltage.

Gates (Not Bill) 109

The input of a relay need not be a switch, and the output of a relay need
not be a lightbulb. The output of one relay can be connected to the input
of another relay, for example, like this:

V

V

V

When you turn the switch on, the first relay is triggered, which then pro-
vides a voltage to the second relay. The second relay is triggered and the light
goes on:

V

V

V

Connecting relays is the key to building logic gates.
Actually, the lightbulb can be connected to the relay in two ways. Notice

the flexible metal piece that’s pulled by the electromagnet. At rest, it’s touch-
ing one contact; when the electromagnet pulls it, it hits another contact.
We’ve been using that lower contact as the output of the relay, but we could

110 Chapter Eleven

just as well use the upper contact. When we use this contact, the output of
the relay is reversed and the lightbulb is on when the input switch is open:

V

V

And when the input switch is closed, the bulb goes out:

V

V

Using the terminology of switches, this type of relay is called a double-throw
relay. It has two outputs that are electrically opposite—when one has a
voltage, the other doesn’t.

By the way, if you’re having a tough time visualizing what modern relays
look like, you can see a few in conveniently transparent packaging at your
local Radio Shack. Some, like the heavy-duty relays with Radio Shack part
numbers 275-206 and 275-214, are about the size of ice cubes. The insides
are encased in a clear plastic shell, so you can see the electromagnet and the
metal contacts. The circuits I’ll be describing in this chapter and the next
could be built using Radio Shack part number 275-240 relays, which are
smaller (about the size of a Chiclet) and cheaper ($2.99 apiece).

Gates (Not Bill) 111

Just as two switches can be connected in series, two relays can be con-
nected in series:

V

V

V

The output of the top relay supplies a voltage to the second relay. As you
can see, when both switches are open, the lightbulb isn’t lit. We can try clos-
ing the top switch:

V

V

V

112 Chapter Eleven

Still the lightbulb doesn’t light because the bottom switch is still open and
that relay isn’t triggered. We can try opening the top switch and closing the
bottom switch:

V

V

V

The lightbulb is still not lit. The current can’t reach the lightbulb because
the first relay isn’t triggered. The only way to get the bulb to light up is to
close both switches:

V

V

V

Gates (Not Bill) 113

Now both relays are triggered, and current can flow between V, the lightbulb,
and ground.

Like the two switches wired in series, these two relays are performing a
little exercise in logic. The bulb lights up only if both relays are triggered.
These two relays wired in series are known as an AND gate. To avoid ex-
cessive drawing, electrical engineers have a special symbol for an AND gate.
That symbol looks like this:

OutputInputs

This is the first of four basic logic gates. The AND gate has two inputs (at
the left in this diagram) and one output (at the right). You’ll often see the
AND gate drawn as this one is with the inputs at the left and the output at
the right. That’s because people who are accustomed to reading from left to
right also like to read electrical diagrams from left to right. But the AND
gate can just as well be drawn with the inputs at the top, the right, or the
bottom.

The original circuit with the two relays wired in series with two switches
and a lightbulb looked like this:

V

V

V

114 Chapter Eleven

Using the symbol for the AND gate, this same circuit looks like this:

V

V

Notice that this symbol for the AND gate not only takes the place of two
relays wired in series, but it also implies that the top relay is connected to a
voltage, and both relays are connected to ground. Again, the lightbulb lights
up only if both the top switch and the bottom switch are closed. That’s why
it’s called an AND gate.

The inputs of the AND gate don’t necessarily have to be connected to
switches, and the output doesn’t necessarily have to be connected to a
lightbulb. What we’re really dealing with here are voltages at the inputs and
a voltage at the output. For example, the output of one AND gate can be
an input to a second AND gate, like this:

V

V

V

This bulb will light up only if all three switches are closed. Only if the top
two switches are closed will the output of the first AND gate trigger the first
relay in the second AND gate. The bottom switch triggers the second relay
in the second AND gate.

If we think of the absence of a voltage as a 0, and the presence of a volt-
age as a 1, the output of the AND gate is dependent on inputs like this:

0
0

0
0

1

0

0
0

1
1

1

1

Gates (Not Bill) 115

As with the two switches wired in series, the AND gate can also be described
in this little table:

AND 0 1

0 0 0

1 0 1

It’s also possible to make AND gates with more than two inputs. For ex-
ample, suppose you connect three relays in series:

V

V

V

V

The lightbulb lights up only if all three switches are closed. This configura-
tion is expressed by this symbol:

It’s called a 3-input AND gate.

116 Chapter Eleven

The next logic gate involves two relays that are wired in parallel like this:

V

V

V

V

Notice that the outputs of the two relays are connected to each other. This
connected output then provides power for the lightbulb. Either one of the
two relays is enough to light the bulb. For example, if we close the top switch,
the bulb lights up. The bulb is getting power from the left relay.

V

V

V

V

Gates (Not Bill) 117

Similarly, if we leave the top switch open but close the bottom switch, the
bulb lights up:

V

V

V

V

The bulb also lights if both switches are closed:

V

V

V

V

118 Chapter Eleven

What we have here is a situation in which the bulb lights up if the top switch
or the bottom switch is closed. The key word here is or, so this is called the
OR gate. Electrical engineers use a symbol for the OR gate that looks like this:

OutputInputs

It’s somewhat similar to the symbol for the AND gate except that the input
side is rounded, much like the O in OR. (That might help you to keep them
straight.)

The output of the OR gate supplies a voltage if either of the two inputs
has a voltage. Again, if we say that the absence of a voltage is 0 and the pres-
ence of a voltage is 1, the OR gate has four possible states:

0
0

0
1

1

0

1
0

1
1

1

1

In the same way that we summarized the output of the AND gate, we can
summarize the output of the OR gate:

OR 0 1

0 0 1

1 1 1

OR gates can also have more than two inputs. (The output of such a gate is
1 if any of the inputs are 1; the output is 0 only if all the outputs are 0.)

Earlier I explained how the relays that we’re using are called double-throw
relays because an output can be connected two different ways. Normally,
the bulb isn’t lit when the switch is open:

V

V

Gates (Not Bill) 119

When the switch is closed, the bulb lights up.
Alternatively, you can use the other contact so that the bulb is lit when

the switch is open:

V

V

In this case, the lightbulb goes out when you close the switch. A single re-
lay wired in this way is called an inverter. An inverter isn’t a logic gate (logic
gates always have two or more inputs), but it’s often very useful nonethe-
less. It’s represented by a special symbol that looks like this:

OutputInput

It’s called an inverter because it inverts 0 (no voltage) to 1 (voltage) and
vice versa:

10

01

With the inverter, the AND gate, and the OR gate, we can start wiring
the control panel to automate a choice of the ideal kitty. Let’s begin with the
switches. The first switch is closed for female and open for male. Thus we
can generate two signals that we’ll call F and M, like this:

M

V

F

120 Chapter Eleven

When F is 1, M will be 0 and vice versa. Similarly, the second switch is closed
for a neutered cat and open for an unneutered cat:

U

V

N

The next two switches are more complicated. In various combinations,
these switches must indicate four different colors. Here are the two switches,
both wired to a voltage:

V

V

When both switches are open (as shown), they indicate the color white.
Here’s how to use two inverters and one AND gate to generate a signal I’ll
call W, which is a voltage (1) if you select a white cat and not a voltage (0)
if not:

V

V

W

When the switches are open, the inputs to both inverters are 0. The outputs
of the inverters (which are inputs to the AND gate) are thus both 1. That
means the output of the AND gate is 1. If either of the switches is closed,
the output of the AND gate will be a 0.

To indicate a black cat, we close the first switch. This can be realized using
one inverter and an AND gate:

BV

V

The output of the AND gate will be 1 only if the first switch is closed and
the second switch is open.

Gates (Not Bill) 121

Similarly, if the second switch is closed, we want a tan cat:

TV

V

And if both switches are closed, we want a cat of an “other” color:

OV

V

Now let’s combine all four little circuits into one big circuit. (As usual,
the black dots indicate connections between wires in the circuit; wires that
cross without black dots are not connected.)

V

W

B

T

O

V

Yes, I know this set of connections now looks very complicated. But if you
trace through very carefully—if you look at the two inputs to each AND gate
to see where they’re coming from and try to ignore where they’re also going—
you’ll see that the circuit works. If both switches are off, the W output will
be 1 and the rest will be 0. If the first switch is closed, the B output will be
1 and the rest will be 0, and so forth.

Some simple rules govern how you can connect gates and inverters: The
output of one gate (or inverter) can be the input to one or more other gates
(or inverters). But the outputs of two or more gates (or inverters) are never
connected to one another.

This circuit of four AND gates and two inverters is called a 2-Line-to-4-
Line Decoder. The input is two bits that in various combinations can rep-
resent four different values. The output is four signals, only one of which
is 1 at any time, depending on the two input values. On similar principles,
you can make a 3-Line-to-8-Line Decoder or a 4-Line-to-16-Line Decoder,
and so forth.

122 Chapter Eleven

The simplified version of the cat-selection expression was

(N × ((M × (W + T)) + (F × (1 − W)))) + B

For every + sign in this expression, there must be an OR gate in the circuit.
For every × sign, there must be an AND gate.

N
M

W
T
F
W
B

The symbols down the left side of the circuit diagram are in the same order
as they appear in the expression. These signals come from the switches wired
with inverters and the 2-line-to-4-line decoder. Notice the use of the inverter
for the (1 − W) part of the expression.

Now you might say, “That’s a heck of a lot of relays,” and yes, that’s true.
There are two relays in every AND gate and OR gate, and one relay for each
inverter. I’d say the only realistic response is, “Get used to it.” We’ll be using
a lot more relays in the chapters ahead. Just be thankful you don’t actually
have to buy them and wire them at home.

We’ll look at two more logic gates in this chapter. Both use the output
of the relay that normally has a voltage present when the relay is untriggered.
(This is the output used in the inverter.) For example, in this configuration
the output from one relay supplies power to a second relay. With both in-
puts off, the lightbulb is on:

V

V

V

Gates (Not Bill) 123

If the top switch is closed, the bulb goes off:

V

V

V

The light goes off because power is no longer being supplied to the second
relay. Similarly, if the bottom switch is closed, the light is also off:

V

V

V

124 Chapter Eleven

And if both switches are closed, the lightbulb is off:

V

V

V

This behavior is precisely the opposite of what happens with the OR gate.
It’s called NOT OR or, more concisely, NOR. This is the symbol for the
NOR gate:

It’s the same as the symbol for the OR except with a little circle at the out-
put. The circle means invert. The NOR is the same as

Gates (Not Bill) 125

The output of the NOR gate is shown in the following table:

NOR 0 1

0 1 0

1 0 0

This table shows results opposite those of the OR gate, which are 1 if either
of the two inputs is 1 and 0 only if both inputs are 0.

And yet another way to wire two relays is shown here:

V

V

V

V

In this case, the two outputs are connected, which is similar to the OR
configuration but using the other contacts. The lightbulb is on when both
switches are open.

126 Chapter Eleven

The lightbulb remains on when the top switch is closed:

V

V

V

V

Similarly, the lightbulb remains on when the bottom switch is closed:

V

V

V

V

Gates (Not Bill) 127

Only when both switches are closed does the lightbulb go off:

V

V

V

V

This behavior is exactly opposite that of the AND gate. This is called NOT
AND or, more concisely, NAND. The NAND gate is drawn just like the
AND gate but with a circle at the output, meaning the output is the inverse
of the AND gate:

OutputInputs

The NAND gate has the following behavior:

NAND 0 1

0 1 1

1 1 0

Notice that the output of the NAND gate is opposite the AND gate. The output
of the AND gate is 1 only if both inputs are 1; otherwise, the output is 0.

At this point, we’ve looked at four different ways of wiring relays that
have two inputs and one output. Each configuration behaves in a slightly
different way. To avoid drawing and redrawing the relays, we’ve called them
logic gates and decided to use the same symbols to represent them that are

128 Chapter Eleven

used by electrical engineers. The output of the particular logic gate depends
on the input, which is summarized here:

AND 0 1

0 0 0

1 0 1

NAND 0 1

0 1 1

1 1 0

OR 0 1

0 0 1

1 1 1

NOR 0 1

0 1 0

1 0 0

So now we have four logic gates and the inverter. Completing this array
of tools is just a regular old relay:

V

V

This is called a buffer, and this is the symbol for it:

It’s the same symbol as the inverter but without the little circle. The buffer
is remarkable for not doing much. The output of the buffer is the same as
the input:

00

11

But you can use a buffer when an input signal is weak. You’ll recall that this
was the reason relays were used with the telegraph many years ago. Or a
buffer can be used to slightly delay a signal. This works because the relay
requires a little time—some fraction of a second—to be triggered.

Gates (Not Bill) 129

From here on in the book, you’ll see very few drawings of relays. Instead,
the circuits that follow will be built from buffers, inverters, the four basic
logic gates, and more sophisticated circuits (like the 2-Line-to-4-Line Decoder)
built from these logic gates. All these other components are made from re-
lays, of course, but we don’t actually have to look at the relays.

Earlier, when building the 2-Line-to-4-Line Decoder, we saw a little cir-
cuit that looked like this:

Two inputs are inverted and become inputs to an AND gate. Sometimes a
configuration like this is drawn without the inverters:

Notice the little circles at the input to the AND gate. Those little circles mean
that the signals are inverted at that point—a 0 (no voltage) becomes a 1 (volt-
age) and vice versa.

An AND gate with two inverted inputs does exactly the same thing as a
NOR gate:

=

The output is 1 only if both inputs are 0.
Similarly, an OR gate with the two inputs inverted is equivalent to a

NAND gate:

=

The output is 0 only if both inputs are 1.
These two pairs of equivalent circuits represent an electrical implemen-

tation of De Morgan’s Laws. Augustus De Morgan was another Victorian-
era mathematician, nine years older than Boole, whose book Formal Logic
was published in 1847, the very same day (the story goes) as Boole’s The
Mathematical Analysis of Logic. Indeed, Boole had been inspired to investi-
gate logic by a very public feud that was being waged between De Morgan

130 Chapter Eleven

and another British mathematician involving accusations of plagiarism. (De
Morgan has been exonerated by history.) Very early on, De Morgan recog-
nized the importance of Boole’s insights. He unselfishly encouraged Boole
and helped him along the way, and is today sadly almost forgotten except
for his famous laws.

De Morgan’s Laws are most simply expressed this way:

A x B = A + B
A + B = A x B

A and B are two Boolean operands. In the first expression, they’re inverted
and then combined with the Boolean AND operator. This is the same as
combining the two operands with the Boolean OR operator and then invert-
ing the result (which is the NOR). In the second expression, the two oper-
ands are inverted and then combined with the Boolean OR operator. This
is the same as combining the operands with the Boolean AND operator and
then inverting (which is the NAND).

De Morgan’s Laws are an important tool for simplifying Boolean expres-
sions and hence, for simplifying circuits. Historically, this was what Claude
Shannon’s paper really meant for electrical engineers. But obsessively sim-
plifying circuits won’t be a major concern in this book. It’s preferable to get
things working rather than to get things working as simply as possible. And
what we’re going to get working next is nothing less than an adding machine.

131

Chapter Twelve

A Binary
Adding Machine

ddition is the most basic of arithmetic operations, so if we want to
build a computer (and that is my hidden agenda in this book), we
must first know how to build something that adds two numbers

together. When you come right down to it, addition is just about the only
thing that computers do. If we can build something that adds, we’re well on
our way to building something that uses addition to also subtract, multiply,
divide, calculate mortgage payments, guide rockets to Mars, play chess, and
foul up our phone bills.

The adding machine that we’ll build in this chapter will be big, clunky,
slow, and noisy, at least compared to the calculators and computers of
modern life. What’s most interesting is that we’re going to build this add-
ing machine entirely out of simple electrical devices that we’ve learned about
in previous chapters—switches, lightbulbs, wires, a battery, and relays that
have been prewired into various logic gates. This adding machine will con-
tain nothing that wasn’t invented at least 120 years ago. And what’s really
nice is that we don’t have to actually build anything in our living rooms;
instead, we can build this adding machine on paper and in our minds.

This adding machine will work entirely with binary numbers and will lack
some modern amenities. You won’t be able to use a keyboard to indicate the
numbers you want to add; instead you’ll use a row of switches. Rather than
a numeric display to show the results, this adding machine will have a row
of lightbulbs.

But this machine will definitely add two numbers together, and it will do
so in a way that’s very much like the way that computers add numbers.

A

132 Chapter Twelve

Adding binary numbers is a lot like adding decimal numbers. When you
want to add two decimal numbers such as 245 and 673, you break the prob-
lem into simpler steps. Each step requires only that you add a pair of deci-
mal digits. In this example, you begin with 5 plus 3. The problem goes a lot
faster if you memorized an addition table sometime during your life.

The big difference between adding decimal and binary numbers is that
you use a much simpler table for binary numbers:

+ 0 1

0 0 1

1 1 10

If you actually grew up with a community of whales and memorized this
table in school, you might have chanted aloud:

0 plus 0 equals 0.
0 plus 1 equals 1.
1 plus 0 equals 1.

1 plus 1 equals 0, carry the 1.

You can rewrite the addition table with leading zeros so that each result
is a 2-bit value:

+ 0 1

0 00 01

1 01 10

Viewed like this, the result of adding a pair of binary numbers is 2 bits, which
are called the sum bit and the carry bit (as in “1 plus 1 equals 0, carry the 1”).
Now we can divide the binary addition table into two tables, the first one for
the sum bit:

+ sum 0 1

0 0 1

1 1 0

and the second one for the carry bit:

+ carry 0 1

0 0 0

1 0 1

A Binary Adding Machine 133

It’s convenient to look at binary addition in this way because our adding
machine will do sums and carries separately. Building a binary adding machine
requires that we design a circuit that performs these operations. Working
solely in binary simplifies the problem immensely because all the parts of a
circuit—switches, lightbulbs, and wires—can be binary digits.

As in decimal addition, we add two binary numbers column by column
beginning with the rightmost column:

01100101
+ 10110110
100011011

Notice that when we add the third column from the right, a 1 is carried over
to the next column. This happens again in the sixth, seventh, and eighth col-
umns from the right.

What size binary numbers do we want to add? Since we’re building our
adding machine only in our minds, we could build one to add very long num-
bers. But let’s be reasonable and decide to add binary numbers up to 8 bits
long. That is, we want to add binary numbers that can range from 0000-0000
through 1111-1111, or decimal 0 through 255. The sum of two 8-bit numbers
can be as high as 1-1111-1110, or 510.

The control panel for our binary adding machine can look like this:

�

�

�

�

We have on this panel two rows of eight switches. This collection of switches
is the input device, and we’ll use it to “key in” the two 8-bit numbers. In
this input device, a switch is off (down) for 0 and on (up) for 1, just like the
wall switches in your home. The output device at the bottom of the panel
is a row of nine lightbulbs. These bulbs will indicate the answer. An unlit
bulb is a 0 and a lit bulb is a 1. We need nine bulbs because the sum of the
two 8-bit numbers can be a 9-bit number.

The rest of the adding machine will consist of logic gates wired together
in various ways. The switches will trigger the relays in the logic gates,
which will then turn on the correct lights. For example, if we want to add
0110-0101 and 1011-0110 (the two numbers shown in the preceding ex-
ample), we throw the appropriate switches as shown on the following page.

134 Chapter Twelve

�

�

�

�

The bulbs light up to indicate the answer of 1-0001-1011. (Well, let’s hope
so, anyway. We haven’t built it yet!)

I mentioned in the last chapter that I’ll be using lots of relays in this book.
The 8-bit adding machine we’re building in this chapter requires no fewer
than 144 relays—18 for each of the 8 pairs of bits we’re adding together. If
I showed you the completed circuit in its entirety, you’d definitely freak.
There’s no way that anyone could make sense of 144 relays wired together
in strange ways. Instead, we’re going to approach this problem in stages using
logic gates.

Maybe you saw right away a connection between logic gates and binary
addition when you looked at the table of the carry bit that results from
adding two 1-bit numbers together:

+ carry 0 1

0 0 0

1 0 1

You might have realized that this was identical to the output of the AND
gate shown in the last chapter:

AND 0 1

0 0 0

1 0 1

So the AND gate calculates a carry bit for the addition of two binary digits.
Aha! We’re definitely making progress. Our next step seems to be to

persuade some relays to behave like this:

+ sum 0 1

0 0 1

1 1 0

This is the other half of the problem in adding a pair of binary digits. The
sum bit turns out to be not quite as straightforward as the carry bit, but we’ll
get there.

A Binary Adding Machine 135

The first thing to realize is that the OR gate is close to what we want
except for the case in the lower right corner:

OR 0 1

0 0 1

1 1 1

The NAND gate is also close to what we want except for the case in the upper
left corner:

NAND 0 1

0 1 1

1 1 0

So let’s connect both an OR gate and a NAND gate to the same inputs:

OR Out

NAND Out

A In

B In

The following table summarizes the outputs of these OR and NAND gates
and compares that to what we want for the adding machine:

NAND What
A In B In OR Out Out we want

0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

Notice that what we want is 1 only if the output from the OR gate and the
NAND gate are both 1. This suggests that these two outputs can be an in-
put to an AND gate:

Out

A In

B In

And that’s it.

136 Chapter Twelve

Notice that there are still only two inputs and one output to this entire
circuit. The two inputs go into both the OR gate and the NAND gate. The
outputs from the OR and NAND gates go into the AND gate, and that gives
us exactly what we want:

A In B In OR Out NAND Out AND Out
0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

There’s actually a name for what this circuit does. It’s called the Exclusive
OR gate or, more briefly, the XOR gate. It’s called the Exclusive OR gate
because the output is 1 if the A input is 1 or the B input is 1, but not both.
So, instead of drawing an OR gate, NAND gate, and AND gate, we can use
the symbol that electrical engineers use for the XOR gate:

OutputInputs

It looks very much like the OR gate except that it has another curved line
at the input side. The behavior of the XOR gate is shown here:

XOR 0 1

0 0 1

1 1 0

The XOR gate is the final logic gate I describe in detail in this book. (A sixth
gate sometimes shows up in electrical engineering. It’s called the coincidence
or equivalence gate because the output is 1 only if the two inputs are the
same. The coincidence gate describes an output opposite that of the XOR
gate, so this gate’s symbol is the same as the XOR gate but with a little circle
at the output end.)

Let’s review what we know so far. Adding two binary numbers produces
a sum bit and a carry bit:

+ sum 0 1

0 0 1

1 1 0

+ carry 0 1

0 0 0

1 0 1

You can use the following two logic gates to get these results:

A Binary Adding Machine 137

XOR 0 1

0 0 1

1 1 0

AND 0 1

0 0 0

1 0 1

The sum of two binary numbers is given by the output of an XOR gate, and
the carry bit is given by the output of an AND gate. So we can combine an
AND gate and an XOR gate to add two binary digits called A and B:

Carry Out

Sum Out
A In

B In

And instead of drawing and redrawing an AND gate and an XOR gate, you
can simply draw a box like this:

Sum OutA In

B In Carry Out

Half
Adder

A

B

S

CO

This box is labeled Half Adder for a reason. Certainly it adds two binary
digits and gives you a sum bit and a carry bit. But the vast majority of bi-
nary numbers are longer than 1 bit. What the Half Adder fails to do is add
a possible carry bit from a previous addition. For example, suppose we’re
adding two binary numbers like these:

1111
+ 1111
11110

We can use the Half Adder only for the addition of the rightmost column:
1 plus 1 equals 0, carry the 1. For the second column from the right, we really
need to add three binary numbers because of the carry. And that goes for
all subsequent columns. Each subsequent addition of two binary numbers
can include a carry bit from the previous column.

To add three binary numbers, we need two Half Adders and an OR gate,
wired this way:

Sum OutCarry In

Carry Out
A In

B In

Half
Adder

A

B

S

CO
Half

Adder

A

B

S

CO

138 Chapter Twelve

To understand this, begin with the A and B inputs to the first Half Adder at
the left. The output is a sum and a carry. That sum must be added to the carry
from the previous column, so they’re inputs to the second Half Adder. The
sum from the second Half Adder is the final sum. The two Carry Outs from
the Half Adders are inputs to an OR gate. You might think another Half
Adder is called for here, and that would certainly work. But if you go through
all the possibilities, you’ll find that the Carry Outs from the two Half Adders
are never both equal to 1. The OR gate is sufficient for adding them because
the OR gate is the same as the XOR gate if the inputs are never both 1.

Instead of drawing and redrawing that diagram, we can just call it a Full
Adder:

Sum Out
A In

B In
Carry Out

Full
Adder

Carry In

A

B

S

CO

CI

The following table summarizes all the possible combinations of inputs to
the Full Adder and the resultant outputs:

A In B In Carry In Sum Out Carry Out
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

I said early on in this chapter that we would need 144 relays for our adding
machine. Here’s how I figured that out: Each AND, OR, and NAND gate
requires 2 relays. So an XOR gate comprises 6 relays. A Half Adder is an XOR
gate and an AND gate, so a Half Adder requires 8 relays. Each Full Adder
is two Half Adders and an OR gate, or 18 relays. We need 8 Full Adders for
our 8-bit adding machine. That’s 144 relays.

Recall our original control panel with the switches and lightbulbs:

�

�

�

�

A Binary Adding Machine 139

We can now start wiring the switches and lightbulbs to the Full Adder.
First connect the two rightmost switches and the rightmost lightbulb to

a Full Adder:

V

V

Full
Adder

Carry Out

A

B

S

CO

CI

When you begin adding two binary numbers, the first column of digits that
you add is different. It’s different because every subsequent column might
include a carry bit from the previous column. The first column doesn’t in-
clude a carry bit, which is why the carry input to the Full Adder is connected
to ground. That means a 0 bit. The addition of the first pair of binary dig-
its could, of course, result in a carry bit. That carry output is an input to the
next column.

For the next two digits and the next lightbulb, you use a Full Adder wired
this way:

V

V

Carry In

Full
Adder

Carry Out

A

B

S

CO

CI

The carry output from the first Full Adder is an input to this second Full
Adder. Each subsequent column of digits is wired the same way. Each carry
output from one column is a carry input to the next column.

140 Chapter Twelve

Finally the eighth and last pair of switches are wired to the last Full Adder:

V

V

Carry In

Full
AdderA

B

S

CO

CI

Here the final carry output goes to the ninth lightbulb.
We’re done.
Here’s another way to look at this assemblage of eight Full Adders, with

each Carry Out serving as input to the next Carry In:

FA FA FA FA FA FA FA FA

Carry Out 8-Bit Sum

Carry In

A B CI A B CI A B CI A B CI A B CI A B CI A B CI A B CI

CO S CO S CO S CO S CO S CO S CO S CO S

Here’s the complete 8-Bit Adder drawn as one box. The inputs are labeled
A0 through A7 and B0 through B7. The outputs are labeled S0 through S7

(for sum):

Carry Out

8-Bit Adder

Carry InA Input B Input

A7...A0 B7...B0

S7...S0

Sum Output

CO CI

A Binary Adding Machine 141

This is a common way to label the separate bits of a multibit number. The
bits A0, B0, and S0 are the least-significant, or rightmost, bits. The bits A7,
B7, and S7 are the most-significant, or leftmost, bits. For example, here’s how
these subscripted letters would apply to the binary number 0110-1001:

A7 A6 A5 A4 A3 A2 A1 A0

0 1 1 0 1 0 0 1

The subscripts start at 0 and get higher for more significant digits because
they correspond to the exponents of powers of two:

27 26 25 24 23 22 21 20

0 1 1 0 1 0 0 1

If you multiply each power of two by the digit below it and add, you’ll get
the decimal equivalent of 0110-1001, which is 64 + 32 + 8 + 1, or 105.

Another way an 8-Bit Adder might be drawn is like this:

S7...S0

8

A7...A0

8

B7...B0

8

CO CI

Carry Out

Carry In

8-Bit Adder

A Input B Input

The double-line arrows have an 8 inside to indicate that each represents
a group of eight separate signals. They are labeled A7 ...A0, B7 ...B0, and
S7...S0 also to indicate 8-bit numbers.

Once you build one 8-Bit Adder, you can build another. It then becomes
easy to cascade them to add two 16-bit numbers:

Carry Out

Carry
In

8-Bit Adder

Carry
Out

Carry
In

8-Bit Adder

A Input
(high 8 bits)

8 8

S15...S8

8

S7...S0

8

A7...A0 B7...B0A15...A8 B15...B8

B Input
(high 8 bits)

A Input
(low 8 bits)

8 8

B Input
(low 8 bits)

CO CI CO CI

16-Bit Sum

142 Chapter Twelve

The Carry Out of the adder on the right is connected to the Carry In of the
adder on the left. The adder on the left has as input the most-significant eight
digits of the two numbers to be added and creates as output the most-
significant eight digits of the result.

And now you might ask, “Is this really the way that computers add num-
bers together?”

Basically, yes. But not exactly.
First, adders can be made faster than this one. If you look at how this

circuit works, a carry output from the least-significant pair of numbers is
required for the next pair to be added, and a carry output from the second
pair is required for the third pair to be added, and so forth. The total speed
of the adder is equal to the number of bits times the speed of the Full Adder
component. This is called a ripple carry. Faster adders use additional circuitry
called a look-ahead carry that speeds up this process.

Second (and most important), computers don’t use relays any more! They
did at one time, however. The first digital computers built beginning in the
1930s used relays and later vacuum tubes. Today’s computers use transis-
tors. When used in computers, transistors basically function the same way
relays do, but (as we’ll see) they’re much faster and much smaller and much
quieter and use much less power and are much cheaper. Building an 8-Bit
Adder still requires 144 transistors (more if you replace the ripple carry with
a look-ahead carry), but the circuit is microscopic.

143

Chapter Thirteen

But What
About Subtraction?

fter you’ve convinced yourself that relays can indeed be wired to-
gether to add binary numbers, you might ask, “But what about
subtraction?” Rest assured that you’re not making a nuisance of

yourself by asking questions like this; you’re actually being quite perceptive.
Addition and subtraction complement each other in some ways, but the
mechanics of the two operations are different. An addition marches consis-
tently from the rightmost column of digits to the leftmost column. Each carry
from one column is added to the next column. We don’t carry in subtrac-
tion, however; we borrow, and that involves an intrinsically different mecha-
nism—a messy back-and-forth kind of thing.

For example, let’s look at a typical borrow-laden subtraction problem:

253
− 176

???

To do this, we start with the rightmost column. First we see that 6 is bigger
than 3, so we have to borrow 1 from the 5, and then subtract 6 from 13, which
is 7. Then we have to remember that we borrowed 1 from the 5, so it’s really
a 4, and this 4 is smaller than 7, so we borrow 1 from the 2 and subtract 7
from 14, which is 7. Then we have to remember that we borrowed 1 from the
2, so it’s really a 1, and then we subtract 1 from it to get 0. Our answer is 77:

253
− 176

77

A

144 Chapter Thirteen

Now how are we ever going to persuade a bunch of logic gates to go through
such perverse logic?

Well, we’re not going to try. Instead, we’re going to use a little trick that
lets us subtract without borrowing. This will please Polonius (“Neither a
borrower nor a lender be”) and the rest of us as well. Moreover, examining
subtraction in detail is useful because it directly relates to the way in which
binary codes are used for storing negative numbers in computers.

For this explanation, I need to refer to the two numbers being subtracted.
Their proper names are the minuend and the subtrahend. The subtrahend
is subtracted from the minuend, and the result is the difference:

Minuend
− Subtrahend

Difference

To subtract without borrowing, you first subtract the subtrahend not from
the minuend but from 999:

999
− 176

823

You use 999 here because the numbers have 3 digits. If the numbers had 4
digits, you would use 9999. Subtracting a number from a string of 9s results
in a number called the nines’ complement. The nines’ complement of 176
is 823. And it works in reverse: The nines’ complement of 823 is 176. What’s
nice is this: No matter what the subtrahend is, calculating the nines’ comple-
ment never requires a borrow.

After you’ve calculated the nines’ complement of the subtrahend, you add
it to the original minuend:

253
+ 823
1076

And finally you add 1 and subtract 1000:

1076
+ 1

− 1000
77

You’re finished. The result is the same as before, and never once did you
borrow.

Why does this work? The original subtraction problem is

253 − 176

But What About Subtraction? 145

If any number is both added to and subtracted from this expression, the
result will be the same. So let’s add 1000 and subtract 1000:

253 − 176 + 1000 − 1000

This expression is equivalent to

253 − 176 + 999 + 1 − 1000

Now the various numbers can be regrouped, this way:

253 + (999 − 176) + 1 − 1000

And this is identical to the calculation I demonstrated using the nines’
complement. We replaced the one subtraction with two subtractions and two
additions, but in the process we got rid of all the nasty borrows.

What if the subtrahend is larger than the minuend? For example, the
subtraction problem could be

176
− 253

???

Normally, you would look at this and say, “Hmmm. I see that the subtra-
hend is larger than the minuend, so I have to switch the two numbers around,
perform the subtraction, and remember that the result is really a negative
number.” You might be able to switch them around in your head and write
the answer this way:

176
− 253

77

Doing this calculation without borrowing is a little different from the
earlier example. You begin as you did before by subtracting the subtrahend
(253) from 999 to get the nines’ complement:

999
− 253

746

Now add the nines’ complement to the original minuend:

176
+ 746

922

At this point in the earlier problem, you were able to add 1 and subtract 1000
to get the final result. But in this case, that strategy isn’t going to work well.
You would need to subtract 1000 from 923, and that really means subtract-
ing 923 from 1000, and that requires borrowing.

146 Chapter Thirteen

Instead, since we effectively added 999 earlier, let’s subtract 999 now:

922
− 999

???

When we see this, we realize that our answer will be a negative number and
that we really need to switch around the two numbers by subtracting 922
from 999. This again involves no borrowing, and the answer is as we expect:

922
− 999

− 77

This same technique can also be used with binary numbers and is actu-
ally simpler than with decimal numbers. Let’s see how it works.

The original subtraction problem was

253
− 176

???

When these numbers are converted to binary, the problem becomes

11111101
− 10110000

????????

Step 1. Subtract the subtrahend from 11111111 (which equals 255):

11111111
− 10110000

01001111

When we were working with decimal numbers, the subtrahend was sub-
tracted from a string of nines, and the result was called the nines’ comple-
ment. With binary numbers, the subtrahend is subtracted from a string of
ones and the result is called the ones’ complement. But notice that we don’t
really have to do a subtraction to calculate the ones’ complement. That’s
because every 0 bit in the original number becomes a 1 bit in the ones’
complement, and every 1 bit becomes a 0 bit. For this reason, the ones’
complement is also sometimes called the negation, or the inverse. (At this
point, you might recall from Chapter 11 that we built something called an
inverter that changed a 0 to a 1 and a 1 to a 0.)

Step 2. Add the ones’ complement of the subtrahend to the minuend:

11111101
+ 01001111
101001100

But What About Subtraction? 147

Step 3. Add 1 to the result:

101001100
+ 1
101001101

Step 4. Subtract 100000000 (which equals 256):

101001101
− 100000000

1001101

The result is equivalent to 77 in decimal.
Let’s try it again with the two numbers reversed. In decimal, the subtrac-

tion problem is

176
− 253

???

and in binary it looks like this:

10110000
− 11111101

?????????

Step 1. Subtract the subtrahend from 11111111. You get the ones’
complement:

11111111
− 11111101

00000010

Step 2. Add the ones’ complement of the subtrahend to the minuend:

10110000
+ 00000010

10110010

Now 11111111 must be subtracted from the result in some way. When the
original subtrahend is smaller than the minuend, you accomplish this task
by adding 1 and subtracting 100000000. But you can’t subtract this way
without borrowing. So instead, we subtract this result from 11111111:

11111111
− 10110010

01001101

Again, this strategy really means that we’re just inverting all the bits to get
the result. The answer again is 77, but really −77.

148 Chapter Thirteen

At this point, we have all the knowledge we need to modify the adding
machine developed in the last chapter so that it can perform subtraction as
well as addition. So that this doesn’t become too complex, this new adding
and subtracting machine will perform subtractions only when the subtra-
hend is less than the minuend, that is, when the result is a positive number.

The core of the adding machine was an 8-Bit Adder assembled from
logic gates:

Carry Out

8-Bit Adder

Carry InA Input B Input

A7...A0 B7...B0

S7...S0

Sum Output

CO CI

As you probably recall, the inputs A0 through A7 and B0 through B7 were
connected to switches that indicated two 8-bit values to be added. The Carry
In input was connected to ground. The S0 through S7 outputs were connected
to eight lightbulbs that displayed the result of the addition. Because the
addition could result in a 9-bit value, the Carry Out output was also con-
nected to a ninth lightbulb.

The control panel looked like this:

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

In this diagram, the switches are set to add 183 (or 10110111) and 22
(00010110), producing the result of 205, or 11001101 as shown in the row
of lightbulbs.

The new control panel for adding and subtracting two 8-bit numbers is
just slightly modified. It includes an extra switch to indicate whether we want
to add or subtract.

But What About Subtraction? 149

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Sub

Add

Overflow/
Underflow

You turn this switch off for addition and on for subtraction, as labeled. Also,
only the rightmost eight lightbulbs are used to display results. The ninth
lightbulb is now labeled “Overflow/Underflow.” This lightbulb indicates that
a number is being calculated that can’t be represented by the eight lightbulbs.
This will happen if an addition produces a number greater than 255 (that’s
called an overflow) or if a subtraction produces a negative number (an un-
derflow). A subtraction will produce a negative number if the subtrahend
is larger than the minuend.

The major addition to the adding machine is some circuitry that calcu-
lates a ones’ complement of an 8-bit number. Recall that the ones’ comple-
ment is equivalent to inverting bits, so something to calculate the ones’
complement of an 8-bit number might look as simple as eight inverters:

Inputs

Outputs

The problem with this circuit is that it always inverts the bits that enter into
it. We’re trying to create a machine that does both addition and subtraction,
so the circuitry needs to invert the bits only if a subtraction is being per-
formed. A better circuit looks like this:

Outputs

Inputs

Invert

150 Chapter Thirteen

A single signal labeled Invert is input to each of eight XOR (exclusive OR)
gates. Recall that the XOR exhibits the following behavior:

XOR 0 1

0 0 1

1 1 0

So if the Invert signal is 0, the eight outputs of the XOR gates are the same
as the eight inputs. For example, if 01100001 is input, then 01100001 is
output. If the Invert signal is 1, the eight input signals are inverted. If
01100001 is input, 10011110 is output.

Let’s package these eight XOR gates in a box labeled Ones’ Complement:

Invert
Ones’ Complement

In7 In6 In5 In4 In3 In2 In1 In0

Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

The Ones’ Complement box, the 8-Bit Adder box, and a final exclusive OR
gate can now be wired together like this:

SUB

SUBCO 8-Bit Adder CI

A Input B Input

A7...A0 B7...B0

S7...S0

Sum Output

Invert
Ones’ Complement

SUB

Overflow/
Underflow

But What About Subtraction? 151

Notice the three signals all labeled SUB. This is the Add/Subtract switch.
This signal is 0 if an addition is to be performed and 1 if a subtraction is to
be performed. For a subtraction, the B inputs (the second row of switches)
are all inverted by the Ones’ Complement circuit before entering the adder.
Also for a subtraction, you add 1 to the result of the addition by setting the
CI (Carry In) input of the adder to 1. For an addition, the Ones’ Comple-
ment circuit has no effect and the CI input is 0.

The SUB signal and the CO (Carry Out) output of the adder also go into
an XOR gate that’s used to light up the Overflow/Underflow lamp. If the
SUB signal is 0 (which means an addition is being performed), the lightbulb
will be lit if the CO output of the adder is 1. This means that the result of
the addition is greater than 255.

If a subtraction is being performed and if the subtrahend (the B switches)
is less than the minuend (the A switches), it’s normal that the CO output from
the adder is 1. This represents the 100000000 that must be subtracted in the
final step. So the Overflow/Underflow lamp is lit only if the CO output from
the adder is 0. This means that the subtrahend is greater than the minuend
and the result is negative. The machine shown above isn’t designed to dis-
play negative numbers.

You must surely be glad you asked, “But what about subtraction?”
I’ve been talking about negative numbers in this chapter, but I haven’t yet

indicated what negative binary numbers look like. You might assume that
the traditional negative sign is used with binary just as it is in decimal. For
example, −77 is written in binary as −1001101. You can certainly do that,
but one of the goals in using binary numbers is to represent everything us-
ing 0s and 1s—even tiny symbols such as the negative sign.

Of course, you could simply use another bit for the negative sign. You
could make that extra bit 1 for a negative number and 0 for a positive num-
ber, which would work, although it doesn’t go quite far enough. There’s
another solution for representing negative numbers that also provides a
hassle-free method for adding negative and positive numbers together. The
drawback of this other method is that you must decide ahead of time how
many digits are required for all the numbers you might encounter.

Let’s think about this for a moment. The advantage of writing positive
and negative numbers the way we normally do is that they can go on for-
ever. We imagine 0 as the middle of an infinite stream of positive numbers
going off in one direction and an infinite stream of negative numbers going
off in another:

... −1,000,000 −999,999 ... −3 −2 −1 0 1 2 3 ... 999,999 1,000,000 ...

But suppose we don’t need an infinite number of numbers. Suppose we know
at the outset that every number we come across will be within a particular
range.

Let’s look at a checking account, which is one place people sometimes see
negative numbers. Let’s assume that we never have as much as $500 in our
checking account and that the bank has given us a no-bounce checking limit

152 Chapter Thirteen

of $500. This means that the balance in our checking account is always a
number somewhere between $499 and −$500. Let’s also assume that we
never deposit as much as $500, we never write a check for more than $500,
and we deal only in dollars and don’t care about cents.

This set of conditions means that the range of numbers we deal with in
using our checking account include −500 through 499. That’s a total of 1000
numbers. This restriction implies that we can use just three decimal digits
and no negative sign to represent all the numbers we need. The trick is that
we really don’t need positive numbers ranging from 500 through 999. That’s
because we’ve already established that the maximum positive number we
need is 499. So the three-digit numbers from 500 through 999 can actually
represent negative numbers. Here’s how it works:

To mean −500, we use 500.

To mean −499, we use 501.

To mean −498, we use 502.

(yada, yada, yada)

To mean −2, we use 998.

To mean −1, we use 999.

To mean 0, we use 000.

To mean 1, we use 001.

To mean 2, we use 002.

(yada, yada, yada)

To mean 497, we use 497.

To mean 498, we use 498.

To mean 499, we use 499.

In other words, every 3-digit number that begins with a 5, 6, 7, 8, or 9 is
actually a negative number. Instead of writing the numbers like this:

−500 −499 −498 ... −4 −3 −2 −1 0 1 2 3 4 ... 497 498 499

we write them this way:

500 501 502 ... 996 997 998 999 000 001 002 003 004 ... 497 498 499

Notice that this forms a circle of sorts. The lowest negative number (500)
looks as if it continues from the highest positive number (499). And the
number 999 (which is actually −1) is one less than zero. If we add 1 to 999,
we’d normally get 1000. But since we’re only dealing with three digits, it’s
actually 000.

This type of notation is called ten’s complement. To convert a 3-digit
negative number to ten’s complement, we subtract it from 999 and add 1.
In other words, the ten’s complement is the nines’ complement plus one. For
example, to write −255 in ten’s complement, subtract it from 999 to get 744
and then add 1 to get 745.

But What About Subtraction? 153

You’ve probably heard it said that “Subtraction is merely addition using
negative numbers.” To which you’ve probably replied, “Yeah, but you still
have to subtract them.” Well, using the ten’s complement, you don’t subtract
numbers at all. Everything is addition.

Suppose you have a checking account balance of $143. You write a check
for $78. That means you have to add a negative $78 to $143. In ten’s comple-
ment, −78 is written as 999 − 078 + 1, or 922. So, our new balance is $143
+ $922, which equals (ignoring the overflow), $65. If we then write a check
for $150 dollars, we have to add −150, which in ten’s complement equals
850. So our previous balance of 065 plus 850 equals 915, our new balance.
This is actually equivalent to −$85.

The equivalent system in binary is called two’s complement. Let’s assume
that we’re working with 8-bit numbers. These range from 00000000 to
11111111, which normally correspond to decimal numbers 0 through 255.
But if you also want to express negative numbers, every 8-bit number that
begins with a 1 will actually represent a negative number, as shown in the
following table:

Binary Decimal
10000000 −128

10000001 −127

10000010 −126

10000011 −125

§
11111101 −3

11111110 −2

11111111 −1

00000000 0

00000001 1

00000010 2

§
01111100 124

01111101 125

01111110 126

01111111 127

The range of numbers that you can represent is now limited to −128 through
+127. The most significant (leftmost) bit is known as the sign bit. The sign
bit is 1 for negative numbers and 0 for positive numbers.

To calculate the two’s complement, first calculate the ones’ complement
and then add 1. This is equivalent to inverting all the digits and adding 1.
For example, the decimal number 125 is 01111101. To express −125 in two’s
complement, first invert the digits of 01111101 to get 10000010, and then
add 1 to get 10000011. You can verify the result using the preceding table.
To go backward, do the same thing—invert all the bits and add 1.

154 Chapter Thirteen

This system gives us a way to express positive and negative numbers
without using negative signs. It also lets us freely add positive and negative
numbers using only the rules of addition. For example, let’s add the binary
equivalents of −127 and 124. Using the preceding table as a cheat sheet, this
is simply

10000001
+ 01111100

11111101

The result is equivalent to −3 in decimal.
What you need to watch out for here is overflow and underflow condi-

tions. That’s when the result of an addition is greater than 127 or less than
−128. For example, suppose you add 125 to itself:

01111101
+ 01111101

11111010

Because the high bit is set to 1, the result must be interpreted as a negative
number, specifically the binary equivalent of −6. Something similar happens
when −125 is added to itself:

10000011
+ 10000011
100000110

We decided at the outset that we’re restricting ourselves to 8-bit numbers,
so the leftmost digit of the result must be ignored. The rightmost 8 bits are
equivalent to +6.

In general, the result of an addition involving positive and negative num-
bers is invalid if the sign bits of the two operands are the same but the sign
bit of the result is different.

Now we have two different ways of using binary numbers. Binary num-
bers can be either signed or unsigned. Unsigned 8-bit numbers range from
0 through 255. Signed 8-bit numbers range from −128 through 127. Noth-
ing about the numbers themselves will tell you whether they’re signed or
unsigned. For example, suppose someone says, “I have an 8-bit binary num-
ber and the value is 10110110. What’s the decimal equivalent?” You must
first inquire, “Is that a signed or an unsigned number? It could be −74 or 182.”

That’s the trouble with bits: They’re just zeros and ones and don’t tell you
anything about themselves.

155

Chapter Fourteen

Feedback
and Flip-Flops

verybody knows that electricity makes things move. A brief glance
around the average home reveals electric motors in appliances as
diverse as clocks, fans, food processors, and compact disc players.

Electricity also makes the cones in loudspeakers vibrate, bringing forth
sounds, speech, and music from the stereo system and the television set. But
perhaps the simplest and most elegant way that electricity makes things move
is illustrated by a class of devices that are quickly disappearing as electronic
counterparts replace them. I refer to the marvelously retro electric buzzers
and bells.

Consider a relay wired this way with a switch and battery:

If this looks a little odd to you, you’re not imagining things. We haven’t seen
a relay wired quite like this yet. Usually a relay is wired so that the input is

E

156 Chapter Fourteen

separate from the output. Here it’s all one big circle. If you close the switch,
a circuit is completed:

The completed circuit causes the electromagnet to pull down the flexible
contact:

But when the contact changes position, the circuit is no longer complete, so
the electromagnet loses its magnetism and the flexible contact flips back up:

which, of course, completes the circuit again. What happens is this: As long
as the switch is closed, the metal contact goes back and forth—alternately
closing the circuit and opening it—most likely making a sound. If the con-
tact makes a rasping sound, it’s a buzzer. If you attach a hammer to it and
provide a metal gong, you’ll have the makings of an electric bell.

Feedback and Flip-Flops 157

You can choose from a couple of ways to wire this relay to make a
buzzer. Here’s another way to do it using the conventional voltage and ground
symbols:

V

You might recognize in this diagram the inverter from Chapter 11. The cir-
cuit can be drawn more simply this way:

Output

As you’ll recall, the output of an inverter is 1 if the input is 0, and 0 if the
input is 1. Closing the switch on this circuit causes the relay in the inverter
to alternately open and close. You can also wire the inverter without a switch
to go continuously:

Output

This drawing might seem to be illustrating a logical contradiction because
the output of an inverter is supposed to be opposite the input, but here the
output is the input! Keep in mind, however, that the inverter is actually just
a relay, and the relay requires a little bit of time to change from one state to
another. So even if the input is the same as the output, the output will soon
change, becoming the inverse of the input (which, of course, changes the
input, and so forth and so on).

What is the output of this circuit? Well, the output quickly alternates
between providing a voltage and not providing a voltage. Or, we can say,
the output quickly alternates between 0 and 1.

This circuit is called an oscillator. It’s intrinsically different from every-
thing else we’ve looked at so far. All the previous circuits have changed their
state only with the intervention of a human being who closes or opens a
switch. The oscillator, however, doesn’t require a human being; it basically
runs by itself.

158 Chapter Fourteen

Of course, the oscillator in isolation doesn’t seem to be very useful. We’ll
see later in this chapter and in the next few chapters that such a circuit con-
nected to other circuits is an essential part of automation. All computers have
some kind of oscillator that makes everything else move in synchronicity.

The output of the oscillator alternates between 0 and 1. A common way
to symbolize that fact is with a diagram that looks like this:

This is understood to be a type of graph. The horizontal axis represents time,
and the vertical axis indicates whether the output is 0 or 1:

Time

0

1

All this is really saying that as time passes, the output of the oscillator al-
ternates between 0 and 1 on a regular basis. For that reason, an oscillator
is sometimes often referred to as a clock because by counting the number
of oscillations you can tell time (kind of).

How fast will the oscillator run? That is, how quickly will the metal
contact of the relay vibrate back and forth? How many times a second? That
obviously depends on how the relay is built. One can easily imagine a big,
sturdy relay that clunks back and forth slowly and a small, light relay that
buzzes rapidly.

A cycle of an oscillator is defined as the interval during which the out-
put of the oscillator changes and then comes back again to where it started:

One
cycle

Time

0

1

The time required for one cycle is called the period of the oscillator. Let’s
assume that we’re looking at a particular oscillator that has a period of 0.05
second. We can then label the horizontal axis in seconds beginning from some
arbitrary time we denote as 0:

Feedback and Flip-Flops 159

Time

One
cycle

0 0.025 0.05 0.075 0.10 0.125 0.15

0

1

The frequency of the oscillator is 1 divided by the period. In this example,
if the period of the oscillator is 0.05 second, the frequency of the oscillator
is 1 ÷ 0.05, or 20 cycles per second. Twenty times per second, the output of
the oscillator changes and changes back.

Cycles per second is a fairly self-explanatory term, much like miles per
hour or pounds per square inch or calories per serving. But cycles per second
isn’t used much any more. In commemoration of Heinrich Rudolph Hertz
(1857–1894), who was the first person to transmit and receive radio waves,
the word hertz is now used instead. This usage started first in Germany in
the 1920s and then expanded into other countries over the decades.

Thus, we can say that our oscillator has a frequency of 20 hertz, or (to
abbreviate) 20 Hz.

Of course, we just guessed at the actual speed of one particular oscilla-
tor. By the end of this chapter, we’ll be able to build something that lets us
actually measure the speed of an oscillator.

To begin this endeavor, let’s look at a pair of NOR gates wired a particular
way. You’ll recall that the output of a NOR gate is a voltage only if both
inputs aren’t voltages:

NOR 0 1

0 1 0

1 0 0

Here’s a circuit with two NOR gates, two switches, and a lightbulb:

V

V

Notice the oddly contorted wiring: The output of the NOR gate on the left
is an input to the NOR gate on the right, and the output of the right NOR
gate is an input to the left NOR gate. This is a type of feedback. Indeed, just
as in the oscillator, an output circles back to become an input. This idiosyn-
crasy will be a characteristic of most of the circuits in this chapter.

160 Chapter Fourteen

At the outset, the only current flowing in this circuit is from the output
of the left NOR gate. That’s because both inputs to that gate are 0. Now close
the upper switch. The output from the left NOR gate becomes 0, which means
the output from the right NOR gate becomes 1 and the lightbulb goes on:

V

V

The magic occurs when you now open the upper switch. Because the
output of a NOR gate is 0 if either input is 1, the output of the left NOR
gate remains the same and the light remains lit:

V

V

Now this is odd, wouldn’t you say? Both switches are open—the same as
in the first drawing—yet now the lightbulb is on. This situation is certainly
different from anything we’ve seen before. Usually the output of a circuit is
dependent solely upon the inputs. That doesn’t seem to be the case here.
Moreover, at this point you can close and open that upper switch and the
light remains lit. That switch has no further effect on the circuit because the
output of the left NOR gate remains 0.

Now close the lower switch. Because one of the inputs to the right NOR
gate is now 1, the output becomes 0 and the lightbulb goes out. The output
of the left NOR gate becomes 1:

V

V

Feedback and Flip-Flops 161

Now you can open the bottom switch and the lightbulb stays off:

V

V

We’re back where we started. At this time, you can close and open the
bottom switch with no further effect on the lightbulb. In summary

• Closing the top switch causes the lightbulb to go on, and it stays
on when the top switch is opened.

• Closing the bottom switch causes the lightbulb to go off, and it
stays off when the bottom switch is opened.

The strangeness of this circuit is that sometimes when both switches are
open the light is on, and sometimes when both switches are open, the light
is off. We can say that this circuit has two stable states when both switches
are open. Such a circuit is called a flip-flop, a word also used for beach san-
dals and the tactics of politicians. The flip-flop dates from 1918 with the
work of English radio physicist William Henry Eccles (1875–1966) and F.W.
Jordan (about whom not much seems to be known).

A flip-flop circuit retains information. It “remembers.” In particular, the
flip-flop shown previously remembers which switch was most recently
closed. If you happen to come upon such a flip-flop in your travels and you
see that the light is on, you can surmise that it was the upper switch that was
most recently closed; if the light is off, the lower switch was most recently
closed.

A flip-flop is very much like a seesaw. A seesaw has two stable states,
never staying long in that precarious middle position. You can always tell
from looking at a seesaw which side was pushed down most recently.

Although it might not be apparent yet, flip-flops are essential tools. They
add memory to a circuit to give it a history of what’s gone on before. Imag-
ine trying to count if you couldn’t remember anything. You wouldn’t know
what number you were up to and what number comes next! Similarly, a
circuit that counts (which I’ll show you later in this chapter) needs flip-flops.

There are a couple of different types of flip-flops. What I’ve just shown is
the simplest and is called an R-S (or Reset-Set) flip-flop. The two NOR gates
are more commonly drawn and labeled as in the diagram at the top of the
next page to give it a symmetrical look.

162 Chapter Fourteen

Q

Q
R

S

The output that we used for the lightbulb is traditionally called Q. In addi-
tion, there’s a second output called Q (pronounced Q bar) that’s the oppo-
site of Q. If Q is 0, then Q is 1, and vice versa. The two inputs are called S
for set and R for reset. You can think of these verbs as meaning “set Q to
1” and “reset Q to 0.” When S is 1 (which corresponds to closing the top
switch in the earlier diagram), Q becomes 1 and Q becomes 0. When R is
1 (corresponding to closing the bottom switch in the earlier diagram), Q
becomes 0 and Q becomes 1. When both inputs are 0, the output indicates
whether Q was last set or reset. These results are summed up in the follow-
ing table:

OutputsInputs

Disallowed

Q

1

q

0

0

Q

1

Q

S

1

R

0

0

0

1

0

1 1

This is called a function table or a logic table or a truth table. It shows the
outputs that result from particular combinations of inputs. Because there are
only two inputs to the R-S flip-flop, the number of combinations of inputs
is four. These correspond to the four rows of the table under the headings.

Notice the row second from the bottom when S and R are both 0: The
outputs are indicated as Q and Q. This means that the Q and Q outputs
remain what they were before both the S and R inputs became 0. The final
row of the table indicates that a situation in which the S and R inputs are both
1 is disallowed or illegal. This doesn’t mean you’ll get arrested for doing it,
but if both inputs are 1 in this circuit, both outputs are 0, which violates the
notion of Q being the opposite of Q. So when you’re designing circuitry that
uses the R-S flip-flop, avoid situations in which the S and R inputs are both 1.

The R-S flip-flop is often drawn as a little box with the two inputs and
two outputs labeled like this:

Q

R

S

Q

Feedback and Flip-Flops 163

The R-S flip-flop is certainly interesting as a first example of a circuit that
seems to “remember” which of two inputs was last a voltage. What turns
out to be much more useful, however, is a circuit that remembers whether
a particular signal was 0 or 1 at a particular point in time.

Let’s think about how such a circuit should behave before we actually try
to build it. It would have two inputs. Let’s call one of them Data. Like all
digital signals, the Data input can be 0 or 1. Let’s call the other one Hold
That Bit, which is the digital equivalent of a person saying “Hold that
thought.” Normally the Hold That Bit signal is 0, in which case the Data
signal has no effect on the circuit. When Hold That Bit is 1, the circuit re-
flects the value of the Data signal. The Hold That Bit signal can then go back
to being 0, at which time the circuit remembers the last value of the Data
signal. Any changes in the Data signal have no further effect.

In other words, we want something that has the following function table:

Outputs

Q

0

1

Q

Inputs

Data

0

Hold That Bit

1

1

0

1

0

1 0 Q

In the first two cases, when the Hold That Bit signal is 1, the output Q is
the same as the Data input. In the second two cases, when the Hold That
Bit signal is 0, the Q output is the same as it was before. Notice in the sec-
ond two cases that when Hold That Bit is 0, the Q output is the same re-
gardless of what the Data input is. The function table can be simplified a
little, like this:

Outputs

Q

0

1

Q

Inputs

Data

0

Hold That Bit

1

1 1

0X

The X means “don’t care.” It doesn’t matter what the Data input is because
if the Hold That Bit input is 0, the output Q is the same as it was before.

Implementing a Hold That Bit signal based on our existing R-S flip-flop
requires that we add two AND gates at the input end, as in the diagram at
the top of the following page.

164 Chapter Fourteen

Q

Reset

Set

Hold That Bit

Q

Recall that the output of an AND gate is 1 only if both inputs are 1. In this
diagram, the Q output is 0 and the Q output is 1.

As long as the Hold That Bit signal is 0, the Set signal has no effect on
the outputs:

Q

Reset

Set

Hold That Bit

Q

Similarly, the Reset signal has no effect:

Q

Reset

Set

Hold That Bit

Q

Only when the Hold That Bit signal is 1 will this circuit function the same
way as the normal R-S flip-flop shown earlier:

Q

Reset

Set

Hold That Bit

Q

Feedback and Flip-Flops 165

It behaves like a normal R-S flip-flop because now the output of the upper
AND gate is the same as the Reset signal, and the output of the lower AND
gate is the same as the Set signal.

But we haven’t yet achieved our goal. We want only two inputs, not three.
How is this done? If you recall the original function table of the R-S flip-flop,
the case in which Set and Reset were both 1 was disallowed, so we want to
avoid that. And it doesn’t make much sense for the Set and Reset signals to
now both be 0 because that’s simply the case in which the output didn’t
change. We can accomplish the same thing in this circuit by setting Hold That
Bit to 0.

So it makes sense that if Set is 1, Reset is 0; and if Set is 0, Reset is 1. A
signal called Data can be equivalent to a Set, and the Data signal inverted
can be the Reset signal:

Q
Data

Hold That Bit

Q

In this case, both inputs are 0 and the output Q is 0 (which means that Q is
1). As long as Hold That Bit is 0, the Data input has no effect on the circuit:

Q
Data

Hold That Bit

Q

But when Hold That Bit is 1, the circuit reflects the value of the Data input:

Q
Data

Hold That Bit

Q

166 Chapter Fourteen

The Q output is now the same as the Data input, and Q is the opposite. Now
Hold That Bit can go back to being 0:

Q
Data

Hold That Bit

Q

The circuit now remembers the value of Data when Hold That Bit was last
1, regardless of how Data changes. The Data signal could, for example, go
back to 0 with no effect on the output:

Q
Data

Hold That Bit

Q

This circuit is called a level-triggered D-type flip-flop. The D stands for
Data. Level-triggered means that the flip-flop saves the value of the Data
input when the Hold That Bit input is at a particular level, in this case 1.
(We’ll look at an alternative to level-triggered flip-flops shortly.)

Usually when a circuit like this appears in a book, the input isn’t labeled
Hold That Bit. It’s usually labeled Clock. Of course, this signal isn’t a real
clock, but it might sometimes have clocklike attributes, which means that
it might tick back and forth between 0 and 1 on a regular basis. But for now,
the Clock input simply indicates when the Data input is to be saved:

Q
Data

Clock

Q

Feedback and Flip-Flops 167

And usually when the function table is shown, Data is abbreviated as D and
Clock is abbreviated as Clk:

�������������

�

�

�

�

	

�

��

�

�

�

�

�

����

�

�

�����

This circuit is also known as a level-triggered D-type latch, and that term
simply means that the circuit latches onto one bit of data and keeps it around
for further use. The circuit can also be referred to as a 1-bit memory. I’ll
demonstrate in Chapter 16 how very many of these flip-flops can be wired
together to provide many bits of memory.

Saving a multibit value in latches is often useful. Suppose you want to use
the adding machine in Chapter 12 to add three 8-bit numbers together. You’d
key in the first number on the first set of switches and the second number
on the second set of switches as usual, but then you’d have to write down
the result. You’d then have to key in that result on one set of switches and
key in the third number on the other set of switches. You really shouldn’t
have to key in an intermediate result. You should be able to use it directly
from the first calculation.

Let’s solve this problem using latches. Let’s assemble eight latches in a box.
Each of the eight latches uses two NOR gates and two AND gates and one
inverter, as shown previously. The Clock inputs are all connected. Here’s the
resultant package:

Clk 8-Bit Latch

D7 D6 D5 D4 D3 D2 D1 D0

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

This latch is capable of saving 8 bits at once. The eight inputs on the top are
labeled D0 through D7, and the eight outputs on the bottom are labeled Q0

through Q7. The input at the left is the Clock. The Clock signal is normally
0. When the Clock signal is 1, the 8-bit value on the D inputs is transferred
to the Q outputs. When the Clock signal goes back to 0, that 8-bit value stays
there until the next time the Clock signal is 1.

The 8-Bit Latch can also be drawn with the eight Data inputs and eight
Q outputs grouped together as you see on the following page.

168 Chapter Fourteen

D7...D0

8

Clk 8-Bit Latch

Q7...Q0

8

Here’s the 8-Bit Adder:

S7...S0

8

A7...A0

8

B7...B0

8

CO CI8-Bit Adder

Normally (ignoring what we did with subtraction in the last chapter), the
eight A inputs and eight B inputs are connected to switches, the CI (Carry
In) input is connected to ground, and the eight S (Sum) outputs and CO
(Carry Out) are connected to lightbulbs.

In this revised version, the eight S outputs of the 8-Bit Adder can be con-
nected to both the lightbulbs and the D inputs of the 8-Bit Latch. A switch
labeled Save can be the Clock input of the latches to save a result from the
adder:

8 8

8

V

V

8

CO CI8-Bit Adder

S

8

2-to-1 Selector

8-Bit Latch

Switches

A

8

Q

Switches

Lightbulb Lightbulbs

From Latch

Save
Clk

D

B

B

Out

Sel
A

Feedback and Flip-Flops 169

The box labeled 2-Line-to-1-Line Selector lets you choose with a switch
whether you want the B inputs to the adder to come from the second row
of switches or from the Q outputs of the latches. You close the switch to select
the outputs from the 8-Bit Latch. The 2-Line-to-1-Line Selector uses eight
of the following circuits:

Out
A

Select
B

If the Select input is 1, the output of the OR gate is the same as the B input.
That’s because the output of the top AND gate is the same as the B input,
and the output of the bottom AND gate is 0. Similarly, if the Select input is
0, the output is the same as the A input. This is summed up in the follow-
ing function table:

Outputs

Q

0

1

0

Inputs

Select

0

0

1

A

0

1

X

B

X

X

0

1 X 1 1

The box shown in the revised adding machine comprises eight of these 1-
bit selectors. All the Select inputs are wired together.

This revised adding machine isn’t handling the Carry Out signal very well.
If the addition of two numbers causes the Carry Out signal to be 1, the sig-
nal is ignored when the next number is added in. One possible solution is
to make the Adder, the Latch, and the Selector all 16 bits wide, or at least
wider than the largest sum you’ll encounter. I won’t really be solving this
problem until Chapter 17.

A more interesting approach to the adding machine eliminates an entire
row of eight switches. But first we need to modify the D-type flip-flop slightly
by adding an OR gate and an input signal called Clear. The Clear input is
normally 0. But when it’s 1, the Q output becomes 0, as shown here:

Q
Data

Clock

Q
Clear

170 Chapter Fourteen

This signal forces Q to be 0 regardless of the other input signals, in effect
clearing the flip-flop.

Why do we need this, you might ask? Why can’t we clear the flip-flop by
setting the Data input to 0 and the Clock input to 1? Well, maybe we can’t
control exactly what’s going into the Data input. Maybe we have a set of
eight of these latches wired to the outputs of an 8-Bit Adder, like so:

8

V

8

V

Clr Clk8-Bit Latch

8

Lightbulbs

Add

CI8-Bit Adder

Switches

8

Clear

D

Q

S

A B

Notice that the switch labeled Add now controls the Clock input of the latch.
You might find this adder easier to use than the previous one, particularly

if you need to add a long list of numbers. You begin by pressing the Clear
switch. That action causes the output of the latches to be 0, turning off all
the lights and also setting the second set of inputs to the 8-Bit Adder to all
0s. You key in the first number and press the Add button. That number
appears on the lights. You then key in the second number and again press
the Add button. The number set up by the switches is added to the previ-
ous total, and it appears on the lights. Just continue keying in more num-
bers and pressing the Add switch.

I mentioned earlier that the D-type flip-flop we designed was level-
triggered. This means that the Clock input must change its level from 0 to
1 in order for the value of the Data input to be stored in the latch. But dur-
ing the time that the Clock input is 1, the Data input can change; any changes
in the Data input while the Clock input is 1 will be reflected in the values
of the Q and Q outputs.

For some applications, a level-triggered Clock input is quite sufficient.
But for other applications, an edge-triggered Clock input is preferred. An

Feedback and Flip-Flops 171

edge trigger causes the outputs to change only when the Clock makes a
transition from 0 to 1. As with the level-triggered flip-flop, when the Clock
input is 0, any changes to the Data input don’t affect the outputs. The dif-
ference in an edge-triggered flip-flop is that changes to the Data input also
don’t affect the outputs when the Clock input is 1. The Data input affects
the outputs only at the instant that the Clock changes from 0 to 1.

An edge-triggered D-type flip-flop is constructed from two stages of R-S
flip-flops, wired together this way:

Q

Q

Data

Clock

The idea here is that the Clock input controls both the first stage and the
second stage. But notice that the clock is inverted in the first stage. This means
that the first stage works exactly like a D-type flip-flop except that the Data
input is stored when the Clock is 0. The outputs of the second stage are inputs
to the first stage, and these are saved when the Clock is 1. The overall re-
sult is that the Data input is saved when the Clock changes from 0 to 1.

Let’s take a closer look. Here’s the flip-flop at rest with both the Data and
Clock inputs at 0 and the Q output at 0:

Q

Q

Data

Clock

172 Chapter Fourteen

Now change the Data input to 1:

Q

Q

Data

Clock

This changes the first flip-flop stage because the inverted Clock input is 1.
But the second stage remains unchanged because the uninverted Clock in-
put is 0. Now change the Clock input to 1:

Q

Q

Data

Clock

This causes the second stage to change, and the Q output goes to 1. The
difference is that the Data input can now change (for example, back to 0)
without affecting the Q output:

Q

Q

Data

Clock

The Q and Q outputs can change only at the instant that the Clock input
changes from 0 to 1.

Feedback and Flip-Flops 173

The function table of the edge-triggered D-type flip-flop requires a new
symbol, which is an arrow pointing up (↑). This symbol indicates a signal
making a transition from a 0 to a 1:

Outputs

Q

0

q

1

1

Q

0

Q

Inputs

D

0

Clk

0X

↓

↓

1

The arrow indicates that the output Q becomes the same as the Data input
when the Clock makes a transition from 0 to 1. This is known as a positive
transition of the Clock signal. (A negative transition is the transition from
1 to 0.) The flip-flop has a diagram like this:

Q

D

Clk

Q

The little angle bracket indicates that the flip-flop is edge triggered.
Now I want to show you a circuit using the edge-triggered D-type flip-

flop that you can’t duplicate with the level-triggered version. You’ll recall
the oscillator that we constructed at the beginning of this chapter. The out-
put of the oscillator alternates between 0 and 1:

Output

Let’s connect the output of the oscillator to the Clock input of the edge-
triggered D-type flip-flop. And let’s connect the Q output to the D input:

Q

D

Clk

Q

The output of the flip-flop is itself an input to the flip-flop. It’s feedback upon
feedback! (In practice, this could present a problem. The oscillator is con-
structed out of a relay that’s flipping back and forth as fast as it can. The output
of the oscillator is connected to the relays that make up the flip-flop. These
other relays might not be able to keep up with the speed of the oscillator.
To avoid these problems, let’s assume that the relay used in the oscillator is
much slower than the relays used elsewhere in these circuits.)

174 Chapter Fourteen

To see what happens in this circuit, let’s look at a function table that il-
lustrates the various changes. At the start, let’s say that the Clock input is 0
and the Q output is 0. That means that the Q output is 1, which is connected
to the D input:

Outputs

Q

0

q

1

Inputs

D

1

Clk

0

When the Clock input changes from 0 to 1, the Q output will become the
same as the D input:

Outputs

Q

0

q

1

1 0

Inputs

D

1

Clk

0

1

↓

But because the Q output changes to 0, the D input will also change to 0.
The Clock input is now 1:

Outputs

Q

0

q

1

1

1

0

0

Inputs

D

1

Clk

0

1

0

↓

1

The Clock input changes to back to 0 without affecting the outputs:

Outputs

Q

0

q

1

1

1

0

0

Inputs

D

1

Clk

0

1

0

↓

1 00

1

0

Now the Clock input changes to 1 again. Because the D input is 0, the Q
output becomes 0 and the Q output becomes 1:

Feedback and Flip-Flops 175

Outputs

Q

0

q

1

1

1

0

0

Inputs

D

1

Clk

0

1

0

↓

1 00

1

0

0 10

↓

So the D input also becomes 1:

Outputs

Q

0

q

1

1

1

0

0

Inputs

D

1

Clk

0

1

0

↓

1 00

1

0

0 10
↓

0 11 1

What’s happening here can be summed up very simply: Every time the
Clock input changes from 0 to 1, the Q output changes, either from 0 to 1
or from 1 to 0. The situation is clearer if we look at the timing diagram:

D/Q

Clk

Q

When the Clock input goes from 0 to 1, the value of D (which is the same
as Q) is transferred to Q, thus also changing Q and D for the next transi-
tion of the Clock input from 0 to 1.

If the frequency of the oscillator is 20 Hz (which means 20 cycles per sec-
ond), the frequency of the Q output is half that, or 10 Hz. For this reason,
such a circuit—in which the Q output is routed back to the Data input of a
flip-flop—is also known as a frequency divider.

176 Chapter Fourteen

Of course, the output from the frequency divider can be the Clock input
of another frequency divider to divide the frequency once again. Here’s an
arrangement of three of them:

Q Q QQ

Clk

D

Clk

Q D

Clk

Q D

Clk

Q

Clk

Q1 Q2 Q3

Let’s look at the four signals I’ve labeled at the top of that diagram:

Clk

Q1

Q2

Q3

I’ll admit that I’ve started and ended this diagram at an opportune spot,
but there’s nothing dishonest about it: The circuit will repeat this pattern over
and over again. But do you recognize anything familiar about it?

I’ll give you a hint. Let’s label these signals with 0s and 1s:

Clk

Q1

Q2

Q3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Do you see it yet? Try turning the diagram 90 degrees clockwise, and read
the 4-bit numbers going across. Each of them corresponds to a decimal
number from 0 through 15:

Feedback and Flip-Flops 177

Binary Decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Thus, this circuit is doing nothing less than counting in binary numbers, and
the more flip-flops we add to the circuit, the higher it will count. I pointed
out in Chapter 8 that in a sequence of increasing binary numbers, each col-
umn of digits alternates between 0 and 1 at half the frequency of the column
to the right. The counter mimics this. At each positive transition of the Clock
signal, the outputs of the counter are said to increment, that is, to increase
by 1.

Let’s string eight flip-flops together and put them in a box:

Clk 8-Bit Ripple Counter

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

This is called a ripple counter because the output of each flip-flop becomes
the Clock input of the next flip-flop. Changes ripple through the stages se-
quentially, and the flip-flops at the end might be delayed a little in chang-
ing. More sophisticated counters are synchronous, in which all the outputs
change at the same time.

I’ve labeled the outputs Q0 through Q7. These are arranged so that the
output from the first flip-flop in the chain (Q0) is at the far right. Thus, if
you connected lightbulbs to these outputs, you could read an 8-bit number.

178 Chapter Fourteen

A timing diagram of such a counter could show all eight outputs separately,
or it could show them together, like this:

Clk

00000000 00000001 00000010 00000011 00000100Q

At each positive transition of the Clock, some Q outputs might change and
some might not, but together they reflect increasing binary numbers.

I said earlier in this chapter that we’d discover some way to determine the
frequency of an oscillator. This is it. If you connect an oscillator to the Clock
input of the 8-Bit Counter, the counter will show you how many cycles the
oscillator has gone through. When the total reaches 11111111 (255 in deci-
mal), it goes back to 00000000. Probably the easiest way to use this coun-
ter to determine the frequency of an oscillator is to connect eight lightbulbs
to the outputs of the 8-Bit Counter. Now wait until all the outputs are 0 (that
is, when none of the lightbulbs are lit) and start a stopwatch. Stop the stop-
watch when all the lights go out again. That’s the time required for 256 cycles
of the oscillator. Say it’s 10 seconds. The frequency of the oscillator is thus
256 ÷ 10, or 25.6 Hz.

As flip-flops gain features, they also gain in complexity. This one is called
an edge-triggered D-type flip-flop with preset and clear:

Q

Q

Clear

Preset

D

Clock

The Preset and Clear inputs override the Clock and Data inputs. Normally
these two inputs are 0. When the Preset input is 1, Q becomes 1 and Q
becomes 0. When the Clear input is 1, Q becomes 0 and Q becomes 1. (Like

Feedback and Flip-Flops 179

the Set and Reset inputs of an R-S flip-flop, Preset and Clear shouldn’t be 1
at the same time.) Otherwise, this behaves like a normal edge-triggered D-
type flip-flop:

Outputs

Q

1

q

0

0

0

1

1

Clk

X

X

1 0

Q Q0

Inputs

Pre

1

Clr

0

0

0

0

0

0

0

↓

↓

0

1

D

X

X

0

1

X

The diagram for the edge-triggered D-type flip-flop with preset and clear
looks like this:

Q

D

Clk

Q
Pre

Clr

We have now persuaded telegraph relays to add, subtract, and count in
binary numbers. This is quite an accomplishment, particularly considering
that all the hardware we’ve been using was available more than a hundred
years ago. We have still more to discover. But let’s now take a short break
from building things and have another look at number bases.

180

Chapter Fifteen

Bytes and Hex

he two improved adding machines of the last chapter illustrate
clearly the concept of data paths. Throughout the circuitry, 8-bit
values move from one component to another. Eight-bit values are

inputs to the adders, latches, and data selectors, and also outputs from these
units. Eight-bit values are also defined by switches and displayed by lightbulbs.
The data path in these circuits is thus said to be 8 bits wide. But why 8 bits?
Why not 6 or 7 or 9 or 10?

The simple answer is that these improved adding machines were based
on the original adding machine in Chapter 12, which worked with 8-bit
values. But there’s really no reason why it had to be built that way. Eight bits
just seemed at the time to be a convenient amount—a nice biteful of bits, if
you will. And perhaps I was being just a little bit sneaky, for I now confess
that I knew all along (and perhaps you did as well) that 8 bits of data are
known as a byte.

The word byte originated at IBM, probably around 1956. The word had
its origins in the word bite but was spelled with a y so that nobody would
mistake the word for bit. For a while, a byte meant simply the number of
bits in a particular data path. But by the mid-1960s, in connection with the
development of IBM’s System/360 (their large complex of business comput-
ers), the word came to mean a group of 8 bits.

As an 8-bit quantity, a byte can take on values from 00000000 through
11111111. These values can represent positive integers from 0 through 255,
or if two’s complements are used to represent negative numbers, they can
represent both positive and negative integers in the range −128 through 127.
Or a particular byte can simply represent one of 28, or 256, different things.

It turns out that 8 is, indeed, a nice bite size of bits. The byte is right,
in more ways than one. One reason that IBM gravitated toward 8-bit bytes

T

Bytes and Hex 181

was the ease in storing numbers in a format known as BCD (which I’ll de-
scribe in Chapter 23). But as we’ll see in the chapters ahead, quite by coin-
cidence a byte is ideal for storing text because most written languages around
the world (with the exception of the ideographs used in Chinese, Japanese,
and Korean) can be represented with fewer than 256 characters. A byte is
also ideal for representing gray shades in black-and-white photographs be-
cause the human eye can differentiate approximately 256 shades of gray. And
where 1 byte is inadequate (for representing, for example, the aforemen-
tioned ideographs of Chinese, Japanese, and Korean), 2 bytes—which allow
the representation of 216, or 65,536, things—usually works just fine.

Half a byte—that is, 4 bits—is sometimes referred to as a nibble (and is
sometimes spelled nybble), but this word doesn’t come up in conversation
nearly as often as byte.

Because bytes show up a lot in the internals of computers, it’s convenient
to be able to refer to their values in as succinct a manner as possible. The eight
binary digits 10110110, for example, are certainly explicit but hardly succinct.

We could always refer to bytes by their decimal equivalents, of course,
but that requires converting from binary to decimal—not a particularly nasty
calculation, but certainly a nuisance. I showed one approach in Chapter 8
that’s fairly straightforward. Because each binary digit corresponds to a
power of 2, we can simply write down the digits of the binary number and
the powers of 2 underneath. Multiply each column and add up the products.
Here’s the conversion of 10110110:

x128

+
x64 x32 x16 x8 x4 x2 x1

+ + + + + + =

1 0 1 1 0 1 1 0

128 0 32 16 0 4 2 0 182

Converting a decimal number to binary is a bit more awkward. You start
with the decimal number and divide by decreasing powers of 2. For each
division, the quotient is a binary digit and the remainder is divided by the
next smallest power of 2. Here’s the conversion of 182 back to binary:

128 64 32 16 8 4 2 1

1 0 1 1 0 1 1 0

182 54 54 22 6 6 2 0

Chapter 8 has a more extensive description of this technique. Regardless,
converting between binary and decimal is usually not something that can be
done without a paper and pencil or lots of practice.

In Chapter 8, we also learned about the octal, or base-8, number system.
Octal uses only the digits 0, 1, 2, 3, 4, 5, 6, and 7. Converting between octal
and binary is a snap. All you need remember is the 3-bit equivalent of each
octal digit, as shown in the table on the next page.

182 Chapter Fifteen

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

If you have a binary number (such as 10110110), start at the rightmost
digits. Each group of 3 bits is an octal digit:

10110110
2 6 6

So the byte 10110110 can be expressed as the octal digits 266. This is cer-
tainly more succinct, and octal is indeed one good method for representing
bytes. But octal has a little problem.

The binary representations of bytes range from 00000000 through
11111111. The octal representations of bytes range from 000 through 377.
As is clear in the preceding example, 3 bits correspond to the middle and
rightmost octal digits, but only 2 bits correspond to the leftmost octal digit.
This means that an octal representation of a 16-bit number

1011001111000101
1 3 1 7 0 5

isn’t the same as the octal representations of the 2 bytes that compose the
16-bit number

10110011
2 6 3

11000101
3 0 5

In order for the representations of multibyte values to be consistent with the
representations of the individual bytes, we need to use a system in which each
byte is divided into equal numbers of bits. That means that we need to divide
each byte into four values of 2 bits each (that would be base 4) or two val-
ues of 4 bits each (base 16).

Bytes and Hex 183

Base 16. Now that’s something we haven’t looked at yet, and for good
reason. The base-16 number system is called hexadecimal, and even the word
itself is a mess. Most words that begin with the hexa- prefix (such as hexa-
gon or hexapod or hexameter) refer to six of something. Hexadecimal is sup-
posed to mean sixteen. And even though The Microsoft Manual of Style for
Technical Publications clearly states, “Do not abbreviate as hex,” everyone
always does and I will too.

That’s not the only peculiarity of hexadecimal. In decimal, we count
like this:

0 1 2 3 4 5 6 7 8 9 10 11 12…

In octal, you’ll recall, we no longer need digits 8 and 9:

0 1 2 3 4 5 6 7 10 11 12…

Similarly, the base-4 number system also doesn’t need 4, 5, 6, or 7:

0 1 2 3 10 11 12…

And binary, of course, needs only 0 and 1:

0 1 10 11 100…

But hexadecimal is different because it requires more digits than decimal.
Counting in hexadecimal goes something like this:

0 1 2 3 4 5 6 7 8 9 ? ? ? ? ? ? 10 11 12…

where 10 (pronounced one-zero) is actually 16TEN. The question marks in-
dicate that we need six more symbols to display hexadecimal numbers. What
are these symbols? Where do they come from? Well, they weren’t handed
down to us in tradition like the rest of our number symbols, so the rational
thing to do is make up six new symbols, for example:

Unlike the symbols used for most of our numbers, these have the benefit of
being easy to remember and identify with the actual quantities they repre-
sent. There’s a 10-gallon cowboy hat, a football (11 players on a team), a
dozen donuts, a black cat (associated with unlucky 13), a full moon that
occurs about a fortnight (14 days) after the new moon, and a knife that
reminds us of the assassination of Julius Caesar on the ides (the 15th day)
of March.

Each byte can be expressed as two hexadecimal digits. In other words, a
hexadecimal digit is equivalent to 4 bits, or 1 nibble. The table on the next
page shows how to convert between binary, hexadecimal, and decimal.

184 Chapter Fifteen

1000

1010

1011

1100

1101

1110

8 8

10

11

12

13

14

15

0100

0110

0101

4

6

5

4

6

5

0000

0001

0010

0011

0 0

1

2

33

2

1

0111 7 7

Binary Hexadecimal DecimalBinary Hexadecimal Decimal

1111 15

1001 9 9

Here’s how to represent the byte 10110110 in hexadecimal:

10110110
6

And it doesn’t matter if we’re dealing with multibyte numbers:

11000101
5

10110110
6

One byte is always represented by a pair of hexadecimal digits.
Unfortunately (or perhaps, much to your relief), we really aren’t going

to be using footballs and donuts to write hexadecimal numbers. It could have
been done that way, but it wasn’t. Instead, the hexadecimal system ensures
that everybody gets really confused and stays that way. Those six missing
hexadecimal digits are actually represented by the first six letters of the Latin
alphabet, like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12…

Bytes and Hex 185

The following table shows the real conversion between binary, hexadecimal,
and decimal:

Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

The byte 10110110 can thus be represented by the hexadecimal number B6
without your drawing a football. As you’ll recall from previous chapters, I’ve
been indicating number bases by subscripts, such as

10110110TWO

for binary, and

2312FOUR

for quaternary, and

266EIGHT

for octal, and

182TEN

for decimal. To continue the same system, we can use

B6SIXTEEN

for hexadecimal. But that’s clearly excessive. Fortunately, several other, terser,
methods of denoting hexadecimal numbers are common. You can indicate
the numbers this way:

B6HEX

186 Chapter Fifteen

In this book, I’ll be using mostly a very common approach, which is a low-
ercase h following the number, like so:

B6h

In a hexadecimal number, the positions of each digit correspond to powers
of 16:

Number of ones
Number of sixteens
Number of two hundred fifty-sixes
Number of four thousand ninety-sixes
Number of sixty-five thousand
five hundred thirty-sixes

The hexadecimal number 9A48Ch is

9A48Ch = 9 × 10000h +
A × 1000h +
4 × 100h +
8 × 10h +
C × 1h

This can be written using powers of 16:

9A48Ch = 9 × 164 +
A × 163 +
4 × 162 +
8 × 161 +
C × 160

Or using the decimal equivalents of those powers:

9A48Ch = 9 × 65,536 +
A × 4096 +
4 × 256 +
8 × 16 +
C × 1

Notice that there’s no ambiguity in writing the single digits of the number
(9, A, 4, 8, and C) without a subscript to indicate the number base. A 9 is
a 9 whether it’s decimal or hexadecimal. And an A is obviously hexadeci-
mal—equivalent to 10 in decimal.

Bytes and Hex 187

Converting all the digits to decimal lets us actually do the calculation:

9A48Ch = 9 × 65,536 +
10 × 4096 +

4 × 256 +
8 × 16 +

12 × 1

And the answer is 631,948. This is how hexadecimal numbers are converted
to decimal.

Here’s a template for converting any 4-digit hexadecimal number to
decimal:

x4096

+
x256 x16 x1

+ + =

For example, here’s the conversion of 79ACh. Keep in mind that the hexa-
decimal digits A and C are decimal 10 and 12, respectively:

x4096

+
x256 x16 x1

+ + =28,672 2304 160 12 31,148

7 9 A C

Converting decimal numbers to hexadecimal generally requires divisions.
If the number is 255 or smaller, you know that it can be represented by 1
byte, which is two hexadecimal digits. To calculate those two digits, divide
the number by 16 to get the quotient and the remainder. Let’s use an earlier
example—the decimal number 182. Divide 182 by 16 to get 11 (which is a
B in hexadecimal) with a remainder of 6. The hexadecimal equivalent is B6h.

If the decimal number you want to convert is smaller than 65,536, the
hexadecimal equivalent will have four digits or fewer. Here’s a template for
converting such a number to hexadecimal:

256 16 14096

You start by putting the entire decimal number in the box in the upper left
corner. That’s your first dividend. Divide by 4096, the first divisor. The quo-
tient goes in the box below the dividend, and the remainder goes in the box

188 Chapter Fifteen

to the right of the dividend. That remainder is the new dividend that you
divide by 256. Here’s the conversion of 31,148 back to hexadecimal:

256 16 1

31,148 2476 172 12

7 9 10 12

4096

Of course, decimal numbers 10 and 12 correspond to hexadecimal A and
C. The result is 79ACh.

One problem with this technique is that you probably want to use a cal-
culator for the divisions, but calculators don’t show remainders. If you di-
vide 31,148 by 4096 on a calculator, you’ll get 7.6044921875. To calculate
the remainder, you need to multiply 4096 by 7 (to get 28,672) and subtract
that from 31,148. Or multiply 4096 by 0.6044921875, the fractional part
of the quotient. (On the other hand, some calculators can convert between
decimal and hexadecimal.)

Another approach to converting decimal numbers through 65,535 to hex
involves first separating the number into 2 bytes by dividing by 256. Then
for each byte, divide by 16. Here’s a template for doing it:

16 16

256

Start at the top. With each division, the quotient goes in the box to the left
below the divisor, and the remainder goes in the box to the right. For ex-
ample, here’s the conversion of 51,966:

16 16

256

12 10 15 14

51,966

202 254

The hexadecimal digits are 12, 10, 15, and 14, or CAFE, which looks more
like a word than a number! (And if you go there, you may want to order your
coffee 56,495.)

As for every other number base, there’s an addition table associated with
hexadecimal:

Bytes and Hex 189

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 2 3 4 5 6 7 8 9 A B C D E F 10

2 2 3 4 5 6 7 8 9 A B C D E F 10 11

3 3 4 5 6 7 8 9 A B C D E F 10 11 12

4 4 5 6 7 8 9 A B C D E F 10 11 12 13

5 5 6 7 8 9 A B C D E F 10 11 12 13 14

6 6 7 8 9 A B C D E F 10 11 12 13 14 15

7 7 8 9 A B C D E F 10 11 12 13 14 15 16

8 8 9 A B C D E F 10 11 12 13 14 15 16 17

9 9 A B C D E F 10 11 12 13 14 15 16 17 18

A A B C D E F 10 11 12 13 14 15 16 17 18 19

B B C D E F 10 11 12 13 14 15 16 17 18 19 1A

C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B

D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

You can use the table and normal carry rules to add hexadecimal numbers:

4A3378E2
+ 877AB982

D1AE3264

You’ll recall from Chapter 13 that you can use two’s complements to
represent negative numbers. If you’re dealing with 8-bit signed values in
binary, the negative numbers all begin with 1. In hexadecimal, 2-digit signed
numbers are negative if they begin with 8, 9, A, B, C, D, E, or F because
the binary representations of these hexadecimal digits all begin with 1. For
example, 99h could represent either decimal 153 (if you know you’re deal-
ing with 1-byte unsigned numbers) or decimal −103 (if you’re dealing with
signed numbers).

Or the byte 99h could actually be the number 99 in decimal! This has a
certain appeal to it, of course, but it seems to violate everything we’ve learned
so far. I’ll explain how it works in Chapter 23. But next I must talk about
memory.

190

Chapter Sixteen

An Assemblage
of Memory

s we rouse ourselves from sleep every morning, memory fills in the
blanks. We remember where we are, what we did the day before,
and what we plan to do today. These memories might come in a

rush or a dribble, and maybe after some minutes a few lapses might persist
(“Funny, I don’t remember wearing my socks to bed”), but all in all we can
usually reassemble our lives and achieve enough continuity to commence
living another day.

Of course, human memory isn’t very orderly. Try to remember something
about high school geometry, and you’re likely to start thinking about the kid
who sat in front of you or the day there was a fire drill just as the teacher
was about to explain what QED meant.

Nor is human memory foolproof. Indeed, writing was probably invented
specifically to compensate for the failings of human memory. Perhaps last
night you suddenly woke up at 3:00 A.M. with a great idea for a screenplay.
You grabbed the pen and paper you keep by your bed specifically for that
purpose, and you wrote it down so you wouldn’t forget. The next morning
you can read the brilliant idea and start work on the screenplay. (“Boy meets
girl w. car chase & explosions”? That’s it?) Or maybe not.

We write and we later read. We save and we later retrieve. We store and
we later access. The function of memory is to keep the information intact
between those two events. Anytime we store information, we’re making use
of different types of memory. Paper is a good medium for storing textual in-
formation, and magnetic tape works well for music and movies.

A

An Assemblage of Memory 191

Telegraph relays too—when assembled into logic gates and then flip-
flops—can store information. As we’ve seen, a flip-flop is capable of stor-
ing 1 bit. This isn’t a whole lot of information, but it’s a start. For once we
know how to store 1 bit, we can easily store 2, or 3, or more.

In Chapter 14, we encountered the level-triggered D-type flip-flop, which
is made out of an inverter, two AND gates, and two NOR gates:

Q
Data

Clock

Q

When the Clock input is 1, the Q output is the same as the Data input. But
when the Clock input goes to 0, the Q output holds the last value of the Data
input. Further changes to the Data input don’t affect the outputs until the
Clock input goes to 1 again. The logic table of the flip-flop is the following:

�������������

�

�

�

�

	

�

��

�

�

�

�

�

����

�

�

�����

In Chapter 14, this flip-flop was featured in a couple of different circuits,
but in this chapter it will be used in only one way—to store 1 bit of infor-
mation. For that reason, I’m going to rename the inputs and outputs so that
they’ll be more in accordance with that purpose:

Data In

Write

Data Out

This is the same flip-flop, but now the Q output is named Data Out, and
the Clock input (which started out in Chapter 14 as Hold That Bit) is named

192 Chapter Sixteen

Write. Just as we might write down some information on paper, the Write
signal causes the Data In signal to be written into or stored in the circuit.
Normally, the Write input is 0 and the Data In signal has no effect on the
output. But whenever we want to store the Data In signal in the flip-flop,
we make the Write input 1 and then 0 again. As I mentioned in Chapter 14,
this type of circuit is also called a latch because it latches onto data. Here’s
how we might represent a 1-bit latch without drawing all of the individual
components:

DI

W
DO

It’s fairly easy to assemble multiple 1-bit latches into a multibit latch. All
you have to do is connect the Write signals:

Outputs

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

Inputs
Write

This 8-bit latch has eight inputs and eight outputs. In addition, the latch has
a single input named Write that’s normally 0. To save an 8-bit value in this
latch, make the Write input 1 and then 0 again. This latch can also be drawn
as a single box, like so:

W 8-Bit Latch

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

Or to be more consistent with the 1-bit latch, it can be drawn this way:

An Assemblage of Memory 193

W

DI DO 8Data In Data Out

Write

8-Bit Latch8

Another way of assembling eight 1-bit latches isn’t quite as straightfor-
ward as this. Suppose we want only one Data In signal and one Data Out
signal. But we want the ability to save the value of the Data In signal at eight
different times during the day, or maybe eight different times during the next
minute. And we also want the ability to later check those eight values by
looking at just one Data Out signal.

In other words, rather than saving one 8-bit value as in the 8-bit latch,
we want to save eight separate 1-bit values.

Why do we want to do it this way? Well, maybe because we have only
one lightbulb.

We know we need eight 1-bit latches. Let’s not worry right now about how
data actually gets stored in these latches. Let’s focus first on checking the Data
Out signals of these eight latches using only one lightbulb. Of course, we
could always test the output of each latch by manually moving the lightbulb
from latch to latch, but we’d prefer something a bit more automated than
that. In fact, we’d like to use switches to select which of the eight 1-bit latches
we want to look at.

How many switches do we need? If we want to select something from
eight items, we need three switches. Three switches can represent eight dif-
ferent values: 000, 001, 010, 011, 100, 101, 110, and 111.

So here are our eight 1-bit latches, three switches, a lightbulb, and some-
thing else that we need in between the switches and the lightbulb:

V

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

What Is This?

194 Chapter Sixteen

The “something else” is that mysterious box with eight inputs on top and
three inputs on the left. By closing and opening the three switches, we can
select which of the eight inputs is routed to the output at the bottom of the
box. This output lights up the lightbulb.

So what exactly is “What Is This?”? We’ve encountered something like
it before, although not with so many inputs. It’s similar to a circuit we used
in Chapter 14 in the first revised adding machine. At that time, we needed
something that let us select whether a row of switches or the output from a
latch was used as an input to the adder. In that chapter, it was called a 2-Line-
to-1-Line Selector. Here we need an 8-Line-to-1-Line Data Selector:

Select
Inputs

8-to-1 Selector

D7 D6 D5 D4 D3 D2 D1 D0

Data Inputs

Output

S0

S1

S2

The 8-to-1 Selector has eight Data inputs (shown at the top) and three
Select inputs (shown at the left). The Select inputs choose which of the Data
inputs appears at the Output. For example, if the Select inputs are 000, the
Output is the same as D0. If the Select inputs are 111, the Output is the same
as D7. If the Select inputs are 101, the Output is the same as D5. Here’s the
logic table:

Outputs

Q

D0

D1

D2

Inputs

S2

0

0

0

S1

0

0

1

S0

0

1

0

0 1 1 D3

D4

D5

D6

1

1

1

0

0

1

0

1

0

1 1 1 D7

An Assemblage of Memory 195

The 8-to-1 Selector is built from three inverters, eight 4-input AND gates,
and an 8-input OR gate, like this:

Output

D7

D6

D5

D4

D3

D2

D1

D0

S0

S1

S2

Now, this is a fairly hairy circuit, but perhaps just one example will con-
vince you that it works. Suppose S2 is 1, S1 is 0, and S0 is 1. The inputs to
the sixth AND gate from the top include S0, S1, S2, all of which are 1. No
other AND gate has these three inputs, so all the other AND gates will have
an output of 0. The sixth AND gate from the top will possibly have an output
of 0 if D5 is 0. Or it will have an output of 1 if D5 is 1. The same goes for
the OR gate at the far right. Thus, if the Select inputs are 101, the Output
is the same as D5.

Let’s recap what we’re trying to do here. We’re trying to wire eight 1-bit
latches so that they can be individually written to using a single Data In signal
and individually examined using a single Data Out signal. We’ve already
established that we can choose a Data Output signal from one of the eight
latches by using an 8-to-1 Selector, as shown on the following page.

196 Chapter Sixteen

V

DIW

DO

DIW

DO

W

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

8-to-1 Selector
S0

S1

S2 Out

D7 D6 D5 D4 D3 D2 D1 D0

DI

We’re halfway finished. Now that we’ve established what we need for the
output side, let’s look at the input side.

The input side involves the Data input signals and the Write signal. On
the input side of the latches, we can connect all the Data input signals to-
gether. But we can’t connect the eight Write signals together because we want
to be able to write into each latch individually. We have a single Write sig-
nal that must be routed to one (and only one) of the latches:

V

V

What Is This?

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

Data In

Write

To accomplish this task, we need another circuit that looks somewhat
similar to the 8-to-1 Selector but actually does the opposite. This is the

An Assemblage of Memory 197

3-to-8 Decoder. We’ve also seen a simple Data Decoder before—when wir-
ing the switches to select the color of our ideal cat in Chapter 11.

The 3-to-8 Decoder has eight Outputs. At any time, all but one of the
Outputs are 0. The exception is the Output that’s selected by the S0, S1, and
S2 inputs. This Output is the same as the Data Input.

O7

O6

O5

O4

O3

O2

O1

O0

S0

S1

S2

Data In

Again, notice that the inputs to the sixth AND gate from the top include
S0, S1, S2. No other AND gate has these three inputs. So if the Select inputs
are 101, then all the other AND gates will have an output of 0. The sixth
AND gate from the top will possibly have an output of 0 if the Data Input
is 0 or an output of 1 if the Data Input is 1. Here’s the complete logic table:

Outputs

O7

0

0

0

Inputs

S2

0

0

0

S1

0

0

1

S0

0

1

0

0 1 1 0

0

0

0

1

1

1

0

0

1

0

1

0

1 1 1 Data

O6

0

0

0

O5

0

0

0

O4

0

0

0

0 0 0

0

0

Data

0

Data

0

Data

0

0

0 0 0

O2

0

0

Data

O1

0

Data

0

O0

Data

0

0

0 0 0

0

0

0

0

0

0

0

0

0

0 0 0

O4

0

0

0

Data

0

0

0

0

198 Chapter Sixteen

And here’s the complete circuit with the 8 latches:

3-to-8 Decoder

Data InWrite

8-to-1 Selector

DIW

DO

Address

D7 D6 D5 D4 D3 D2 D1 D0

O7 O6 O5 O4 O3 O2 O1 O0

Output

S0
S1

S2

S0
S1

S2

Data

Data Out

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

DIW

DO

Notice that the three Select signals to the Decoder and the Selector are the
same and that I’ve also labeled those three signals the Address. Like a post
office box number, this 3-bit address determines which of the eight 1-bit
latches is being referenced. On the input side, the Address input determines
which latch the Write signal will trigger to store the Data input. On the
output side (at the bottom of the figure), the Address input controls the 8-to-1
Selector to select the output of one of the eight latches.

This configuration of latches is sometimes known as read/write memory,
but more commonly as random access memory, or RAM (pronounced the
same as the animal). This particular RAM configuration stores eight sepa-
rate 1-bit values. It can be represented this way:

8x1 RAM DO

A0
A1
A2

Data Out

Address

Data In

Write

DI

W

It’s called memory because it retains information. It’s called read/write
memory because you can store a new value in each latch (that is, write the
value) and because you can determine what’s stored in each latch (that is,
you can later read the value). It’s called random access memory because each

An Assemblage of Memory 199

of the eight latches can be read from or written to simply by changing the
Address inputs. In contrast, some other types of memory have to be read se-
quentially—that is, you’d have to read the value stored at address 100 be-
fore you could read the value stored at address 101.

A particular configuration of RAM is often referred to as a RAM array.
This particular RAM array is organized in a manner called in abbreviated
form 8 × 1 (pronounced eight by one). Each of the eight values in the array
is 1 bit. Multiply the two values to get the total number of bits that can be
stored in the RAM array.

RAM arrays can be combined in various ways. For example, you can take
two 8 × 1 RAM arrays and arrange them so that they are addressed in the
same way:

8x1 RAM DO

A0
A1
A2

Data Out

Address

Data In

Write

DI

W

8x1 RAM DO

A0
A1
A2

Data Out
Data In DI

W

The Address and Write inputs of the two 8 × 1 RAM arrays are connected,
so the result is an 8 × 2 RAM array:

8x2 RAM DO1

A0
A1
A2

Data Out

Address

Write

DI0

W

DO0

Data In DI1

This RAM array stores eight values, but each of them is 2 bits in size.
Or the two 8 × 1 RAM arrays can be combined in much the same way

that the individual latches were combined—by using a 2-to-1 Selector and
a 1-to-2 Decoder, as shown on the next page.

200 Chapter Sixteen

8x1 RAM

DO

A0 A1 A2

Data Out

Address

DIW

8x1 RAM

DO

A0 A1 A2 DIW

2-to-1 Selector

D0 D1

1-to-2 Decoder

DO0 DO1

Write Data In Select

S

S

The Select input that goes to both the Decoder and the Selector essentially
selects between the two 8 × 1 RAM arrays. It’s really a fourth address line.
So this is actually a 16 × 1 RAM array:

16x1 RAM

A0
A1
A2

Data Out

Address

Write W

DO

Data In DI

A3

This RAM array stores 16 values, each of which is 1 bit.
The number of values that a RAM array stores is directly related to the

number of Address inputs. With no Address inputs (which is the case with
the 1-bit latch and the 8-bit latch), only one value can be stored. With one
Address input, two values are possible. With two Address inputs, four val-
ues are stored. With three Address inputs, eight values, and with four Ad-
dress inputs, sixteen values. The relationship is summed up by this equation:

Number of values in RAM array = 2Number of Address inputs

An Assemblage of Memory 201

I’ve demonstrated how small RAM arrays can be constructed, and it
shouldn’t be difficult to imagine much larger ones. For example

1024x8
RAM

Addr

Data Out

Write W

DOData In DI

Address 10

8 8

This RAM array stores a total of 8196 bits, organized as 1024 values of eight
bits each. There are ten Address inputs because 210 equals 1024. There are
eight Data inputs and eight Data outputs.

In other words, this RAM array stores 1024 bytes. It’s like a post office
with 1024 post office boxes. Each one has a different 1-byte value inside
(which may or may not be better than junk mail).

One thousand twenty-four bytes is known as a kilobyte, and herein lies
much confusion. The prefix kilo (from the Greek khilioi, meaning a thou-
sand) is most often used in the metric system. For example, a kilogram is
1000 grams and a kilometer is 1000 meters. But here I’m saying that a ki-
lobyte is 1024 bytes—not 1000 bytes.

The problem is that the metric system is based on powers of 10, and bi-
nary numbers are based on powers of 2, and never the twain shall meet.
Powers of 10 are 10, 100, 1000, 10000, 100000, and so on. Powers of 2 are
2, 4, 8, 16, 32, 64, and so on. There is no integral power of 10 that equals
some integral power of 2.

But every once in a while they do come close. Yes, 1000 is fairly close
to 1024, or to put it more mathematically using an “approximately equal
to” sign:

210 ≈ 103

Nothing is magical about this relationship. All it implies is that a particu-
lar power of 2 is approximately equal to a particular power of 10. This little
quirk allows people to conveniently refer to a kilobyte of memory when they
really mean 1024 bytes.

Kilobyte is abbreviated K or KB. The RAM array shown above can be said
to store 1024 bytes or 1 kilobyte or 1K or 1 KB.

What you don’t say is that a 1-KB RAM array stores 1000 bytes, or (in
English) “one thousand bytes.” It’s more than a thousand—it’s 1024. To
sound like you know what you’re talking about, you say either “1K” or “one
kilobyte.”

One kilobyte of memory has eight Data inputs, eight Data outputs, and ten
Address inputs. Because the bytes are accessed by ten Address inputs, the
RAM array stores 210 bytes. Whenever we add another address input, we

202 Chapter Sixteen

double the amount of memory. Each line of the following sequence repre-
sents a doubling of memory:

1 kilobyte = 1024 bytes = 210 bytes ≈ 103 bytes
2 kilobytes = 2048 bytes = 211 bytes
4 kilobytes = 4096 bytes = 212 bytes
8 kilobytes = 8192 bytes = 213 bytes
16 kilobytes = 16,384 bytes = 214 bytes
32 kilobytes = 32,768 bytes = 215 bytes
64 kilobytes = 65,536 bytes = 216 bytes
128 kilobytes = 131,072 bytes = 217 bytes
256 kilobytes = 262,144 bytes = 218 bytes
512 kilobytes = 524,288 bytes = 219 bytes
1,024 kilobytes = 1,048,576 bytes = 220 bytes ≈ 106 bytes

Note that the numbers of kilobytes shown on the left are also powers of 2.
With the same logic that lets us call 1024 bytes a kilobyte, we can also

refer to 1024 kilobytes as a megabyte. (The Greek word megas means
great.) Megabyte is abbreviated MB. And the memory doubling continues:

1 megabyte = 1,048,576 bytes = 220 bytes ≈ 106 bytes
2 megabytes = 2,097,152 bytes = 221 bytes
4 megabytes = 4,194,304 bytes = 222 bytes
8 megabytes = 8,388,608 bytes = 223 bytes
16 megabytes = 16,777,216 bytes = 224 bytes
32 megabytes = 33,554,432 bytes = 225 bytes
64 megabytes = 67,108,864 bytes = 226 bytes
128 megabytes = 134,217,728 bytes = 227 bytes
256 megabytes = 268,435,456 bytes = 228 bytes
512 megabytes = 536,870,912 bytes = 229 bytes
1,024 megabytes = 1,073,741,824 bytes = 230 bytes ≈ 109 bytes

The Greek work gigas means giant, so 1024 megabytes are called a gigabyte,
which is abbreviated GB.

Similarly, a terabyte (teras means monster) equals 240 bytes (approximately
1012) or 1,099,511,627,776 bytes. Terabyte is abbreviated TB.

A kilobyte is approximately a thousand bytes, a megabyte is approxi-
mately a million bytes, a gigabyte is approximately a billion bytes, and a
terabyte is approximately a trillion bytes.

Ascending into regions that few have traveled, a petabyte equals 250 bytes
or 1,125,899,906,842,624 bytes, which is approximately 1015 or a quadril-
lion. An exabyte equals 260 bytes or 1,152,921,504,606,846,976 bytes,
approximately 1018 or a quintillion.

An Assemblage of Memory 203

Just to provide you with a little grounding here, home computers pur-
chased at the time this book was written (1999) commonly have 32 MB or
64 MB or sometimes 128 MB of random access memory. (And don’t get too
confused just yet—I haven’t mentioned anything about hard drives; I’m
talking only about RAM.) That’s 33,554,432 bytes or 67,108,864 bytes or
134,217,728 bytes.

People, of course, speak in shorthand. Somebody who has 65,536 bytes
of memory will say, “I have 64K (and I’m a visitor from the year 1980).”
Somebody who has 33,554,432 bytes will say, “I have 32 megs.” That rare
person who has 1,073,741,824 bytes of memory will say, “I’ve got a gig (and
I’m not talking music).”

Sometimes people will refer to kilobits or megabits (notice bits rather than
bytes), but this is rare. Almost always when people talk about memory,
they’re talking number of bytes, not bits. (Of course, to convert bytes to bits,
multiply by 8.) Usually when kilobits or megabits come up in conversation,
it will be in connection with data being transmitted over a wire and will
occur in such phrases as “kilobits per second” or “megabits per second.”
For example, a 56K modem refers to 56 kilobits per second, not kilobytes.

Now that we know how to construct RAM in any array size we want,
let’s not get too out of control. For now, let’s simply assume that we have
assembled 65,536 bytes of memory:

64Kx8
RAM

Addr

Data Out

Write W

DOData In DI

Address 16

8
8

Why 64 KB? Why not 32 KB or 128 KB? Because 65,536 is a nice round
number. It’s 216. This RAM array has a 16-bit address. In other words, the
address is 2 bytes exactly. In hexadecimal, the address ranges from 0000h
through FFFFh.

As I implied earlier, 64 KB was a common amount of memory in personal
computers purchased around 1980, although it wasn’t constructed from
telegraph relays. But could you really build such a thing using relays? I trust
you won’t consider it. Our design requires nine relays for each bit of memory,
so the total 64K × 8 RAM array requires almost 5 million of them!

It will be advantageous for us to have a control panel that lets us man-
age all this memory—to write values into memory or examine them. Such
a control panel has 16 switches to indicate an address, 8 switches to define
an 8-bit value that we want to write into memory, another switch for the
Write signal itself, and 8 lightbulbs to display a particular 8-bit value, as
shown on the following page.

204 Chapter Sixteen

1

0

1

0

64-KB RAM Control Panel

Write Takeover

1

0

1

0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

D7 D6 D5 D4 D3 D2 D1 D0

All the switches are shown in their off (0) positions. I’ve also included a
switch labeled Takeover. The purpose of this switch is to let other circuits
use the same memory that the control panel is connected to. When the switch
is set to 0 (as shown), the rest of the switches on the control panel don’t do
anything. When the switch is set to 1, however, the control panel has exclu-
sive control over the memory.

This is a job for a bunch of 2-to-1 Selectors. In fact, we need 25 of them—
16 for the Address signals, 8 for the Data input switches, and another for
the Write switch. Here’s the circuit:

V

64Kx8
RAM

Addr

8 Lightbulbs

W

DO
DI

16

8
8

Data
Out

25 2-to-1 Selectors

8 16 8 16

25 SwitchesAddress
Data

InWrite

168

Takeover
S

When the Takeover switch is open (as shown), the Address, Data input, and
Write inputs to the 64K × 8 RAM array come from external signals shown
at the top left of the 2-to-1 Selectors. When the Takeover switch is closed,

An Assemblage of Memory 205

the Address, Data input, and Write signals to the RAM array come from the
switches on the control panel. In either case, the Data Out signals from the
RAM array go to the eight lightbulbs and possibly someplace else.

I’ll draw a 64K × 8 RAM array with such a control panel this way:

Control Panel

64Kx8
RAM

Addr

Data Out

Write W

DOData In DI

Address 16

8
8

When the Takeover switch is closed, you can use the 16 Address switches
to select any of 65,536 addresses. The lightbulbs show you the 8-bit value
currently stored in memory at that address. You can use the 8 Data switches
to define a new value, and you can write that value into memory using the
Write switch.

The 64K × 8 RAM array and control panel can certainly help you keep
track of any 65,536 8-bit values you may need to have handy. But we have
also left open the opportunity for something else—some other circuitry
perhaps—to use the values we have stored in memory and to write other ones
in as well.

There’s one more thing you have to remember about memory, and it’s very
important: When I introduced the concept of logic gates in Chapter 11, I
stopped drawing the individual relays that compose these gates. In particu-
lar, I no longer indicated that every relay is connected to some kind of sup-
ply of electricity. Whenever a relay is triggered, electricity is flowing through
the coils of the electromagnet and holding a metal contact in place.

So if you have a 64K × 8 RAM array filled to the brim with 65,536 of
your favorite bytes and you turn off the power to it, what happens? All the
electromagnets lose their magnetism and with a loud thunk, all the relay
contacts return to their untriggered states. And the contents of this RAM?
They all go POOF! Gone forever.

This is why random access memory is also called volatile memory. It re-
quires a constant supply of electricity to retain its contents.

206

Chapter Seventeen

Automation

he human species is often amazingly inventive and industrious but
at the same time profoundly lazy. It’s very clear that we humans
don’t like to work. This aversion to work is so extreme—and our

ingenuity so acute—that we’re eager to devote countless hours designing and
building devices that might shave a few minutes off our workday. Few fan-
tasies tickle the human pleasure center more than a vision of relaxing in a
hammock watching some newfangled contraption we just built mow the lawn.

I’m afraid I won’t be showing plans for an automatic lawn-mowing ma-
chine in these pages. But in this chapter, through a progression of ever more
sophisticated machines, I will automate the process of adding and subtracting
numbers. This hardly sounds earth-shattering, I know. But the final machine
in this chapter will be so versatile that it will be able to solve virtually any
problem that makes use of addition and subtraction, and that includes a great
many problems indeed.

Of course, with sophistication comes complexity, so some of this might
be rough going. No one will blame you if you skim over the excruciating
details. At times, you might rebel and promise that you’ll never seek elec-
trical or mechanical assistance for a math problem ever again. But stick with
me because by the end of this chapter we’ll have invented a machine we can
legitimately call a computer.

The last adder we looked at was in Chapter 14. That version included
an 8-bit latch that accumulated a running total entered on one set of eight
switches:

T

Automation 207

8

V

8

V

Clr Clk8-Bit Latch

8

Lightbulbs

Add

CI8-Bit Adder

Switches

8

Clear

BA

S

DO

DI

As you’ll recall, an 8-bit latch uses flip-flops to store an 8-bit value. To use
this device, you first momentarily press the Clear switch to set the stored
contents of the latch to all zeros. Then you use the switches to enter your
first number. The adder simply adds this number to the zero output of the
latch, so the result is the number you entered. Pressing the Add switch stores
that number in the latch and turns on some lightbulbs to display it. Now
you set up the second number on the switches. The adder adds this one to
the number stored in the latch. Pressing the Add button again stores the total
in the latch and displays it using the lightbulbs. In this way, you can add a
whole string of numbers and display the running total. The limitation, of
course, is that the eight lightbulbs can’t display a total greater than 255.

At the time I showed this circuit to you in Chapter 14, the only latches
that I had introduced so far were level triggered. In a level-triggered latch,
the Clock input has to go to 1 and then back to 0 in order for the latch to
store something. During the time the Clock input is 1, the data inputs of the
latch can change and these changes will affect the stored output. Later in that
chapter, I introduced edge-triggered latches. These latches save their values
in the brief moment that the Clock input goes from 0 to 1. Edge-triggered
latches are often somewhat easier to use, so I want to assume that all the
latches in this chapter are edge triggered.

A latch used to accumulate a running total of numbers is called an accu-
mulator. But we’ll see later in this chapter that an accumulator need not
simply accumulate. An accumulator is often a latch that holds first one
number and then that number plus or minus another number.

The big problem with the adding machine shown above is fairly obvious:
Say you have a list of 100 binary numbers you want to add together. You
sit down at the adding machine and doggedly enter each and every number
and accumulate the sum. But when you’re finished, you discover that a couple
of the numbers on the list were incorrect. Now you have to do the whole
thing over again.

208 Chapter Seventeen

But maybe not. In the preceding chapter, we used almost 5 million relays
to build a RAM array containing 64 KB of memory. We also wired a control
panel (shown on page 204) that let us close a switch labeled Takeover and lit-
erally take over all the writing and reading of this RAM array using switches.

Data In DI8 64Kx8
RAM

Addr

Data Out

Write W

DO

Address 16

8

Control
Panel

If you had typed all 100 binary numbers into this RAM array rather than
directly into the adding machine, making a few corrections would be a lot
easier.

So now we face the challenge of connecting the RAM array to the accumu-
lating adder. It’s pretty obvious that the RAM Data Out signals replace the
switches to the adder, but it’s perhaps not so obvious that a 16-bit counter (such
as we built in Chapter 14) can control the address signals of the RAM array.
The Data Input and Write signals to the RAM aren’t needed in this circuit:

Clk
Clr

8-Bit
Latch

8

Lightbulbs

Clear

64Kx8
RAMAddr DO16 816-Bit Counter

Clk

Clr

Oscillator

8

V

8

CI8-Bit
Adder

Control
Panel

BA

S

DI

DO

Automation 209

This is certainly not the easiest piece of calculating equipment ever in-
vented. To use it, you first must close the switch labeled Clear. This clears
the contents of the latch and sets the output of the 16-bit counter to 0000h.
Then you close the Takeover switch on the RAM control panel. You can then
enter a set of 8-bit numbers that you want to add beginning at RAM address
0000h. If you have 100 numbers, you’ll store these numbers at addresses
0000h through 0063h. (You should also set all the unused entries in the RAM
array to 00h.) You can then open the Takeover switch of the RAM control
panel (so that the control panel no longer has control over the RAM ar-
ray) and open the Clear switch. Then just sit back and watch the flashing
lightbulbs.

Here’s how it works: When the Clear switch is first opened, the address
of the RAM array is 0000h. The 8-bit value stored in the RAM array at that
address is an input to the adder. The other input to the adder is 00h because
the latch is also cleared.

The oscillator provides a clock signal—a signal that alternates between
0 and 1 very quickly. After the Clear switch is opened, whenever the clock
changes from a 0 to a 1, two things happen simultaneously: The latch stores
the sum from the adder, and the 16-bit counter increments, thus addressing
the next value in the RAM array. The first time the clock changes from 0 to
1 after the Clear switch is opened, the latch stores the first value and the
counter increments to 0001h. The second time, the latch stores the sum of
the first and second values, and the counter increments to 0002h. And so on.

Of course, I’m making some assumptions here. Above all, I’m assuming
that the oscillator is slow enough to allow all the rest of the circuitry to work.
With each stroke of the clock, a lot of relays must trigger other relays be-
fore a valid sum shows up at the output of the adder.

One problem with this circuit is that we have no way of stopping it! At
some point, the lightbulbs will stop flashing because all the rest of the num-
bers in the RAM array will be 00h. At that time, you can read the binary
sum. But when the counter eventually reaches FFFFh, it will roll over (just
like a car odometer) to 0000h and this automated adder will begin adding
the numbers again to the sum that was already calculated.

This adding machine has other problems as well. All it does is add, and
all it adds are 8-bit numbers. Not only is each number in the RAM array
limited to 255, but the sum is limited to 255 as well. The adder also has no
way to subtract numbers, although it’s possible that you’re using negative
numbers in two’s complements, in which case this machine is limited to
handling numbers from −128 through 127. One obvious way to make it add
larger numbers (for example, 16-bit values) is to double the width of the
RAM array, the adder, and the latch, as well as provide eight more lightbulbs.
But you might not be willing to make that investment quite yet.

Of course, I wouldn’t even mention these problems unless I knew we were
going to solve them eventually. But the problem I want to focus on first is yet
another. What if you didn’t need to add 100 numbers together in one big sum?
What if instead you wanted to use an automated adder to add 50 pairs of
numbers to get 50 different sums? Or maybe you’d like a machine versatile

210 Chapter Seventeen

enough to add pairs of numbers together, or 10 numbers together, or 100.
And you want all the results to be available for your convenient perusal.

The automated adder shown previously displays the running total on a
set of lightbulbs attached to the latch. This approach is no good if you want
to add 50 pairs of numbers together to get 50 different sums. Instead, you
probably want the results to be stored back in the RAM array. That way, you
can use the RAM control panel to examine the results at your convenience.
That control panel has its own lightbulbs specifically for this purpose.

What this means is that we can get rid of the lightbulbs connected to the
latch. But instead, the output from the latch must be connected to the data
input of the RAM array so that the sums can be written into the RAM:

Clk

Clr

Clk

Clr
8-Bit
Latch

8

64Kx8
RAM

Addr

DO

16

8

8

CI8-Bit
Adder

Control
Panel

DI8

W

BA

S

DO

DI

16-Bit
Counter

I’ve eliminated some other parts of the automated adder in this diagram as
well, specifically the oscillator and the Clear switch. I removed them because
it’s no longer at all obvious where the Clear and Clock inputs to the counter
and the latch will come from. Moreover, now that we’ve made use of the
RAM data inputs, we need a way to control the RAM Write signal.

So let’s not worry about the circuit for a moment and instead focus on
the problem we’re trying to solve. What we’re trying to do here is config-
ure an automated adder so that it’s not restricted merely to accumulating a
running total of a bunch of numbers. We want to have complete freedom
in how many numbers we add and how many different sums are saved in
RAM for later examination.

For example, suppose we want to add three numbers together and then
add two numbers together and then add another three numbers together. We

Automation 211

might imagine typing these numbers into the RAM array beginning at ad-
dress 0000h so that the contents of the memory look like this:

27h

A2h

18h

1Fh

89h

33h

2Ah

55h

0000h:

0004h:

0007h:

First sum goes here

Second sum goes here

Third sum goes here

This is how I’ll be showing a section of memory in this book. The boxes rep-
resent the contents of the memory. Each byte of memory is in a box. The
address of that box is at the left. Not every address needs to be indicated
because the addresses are sequential and you can always figure out what
address applies to a particular box. At the right are some comments about
this memory. These particular comments indicate that we want the auto-
mated adder to store the three sums in the empty boxes. (Although these
boxes are empty, the memory isn’t necessarily empty. Memory always con-
tains something, even if it’s just random data. But right now it doesn’t con-
tain anything useful.)

Now I know you’re tempted to practice your hexadecimal arithmetic and
fill in the little boxes yourself. But that’s not the point of this demonstration.
We want the automated adder to do the additions for us.

Instead of making the automated adder do just one thing—which in the
first version involved adding the contents of a RAM address to the 8-bit latch
that I’ve called the accumulator—we actually want it now to do four differ-
ent things. To begin an addition, we want it to transfer a byte from memory
into the accumulator. I’ll call this operation Load. The second operation we
need to perform is to Add a byte in memory to the contents of the accumula-
tor. Third, we need to take a sum in the accumulator and Store it in memory.
Finally, we need some way to Halt the automated adder.

In gory detail, what we want the automated adder to do in this particu-
lar example is this:

• Load the value at address 0000h into the accumulator.
• Add the value at address 0001h to the accumulator.
• Add the value at address 0002h to the accumulator.
• Store the contents of the accumulator at address 0003h.
• Load the value at address 0004h into the accumulator.

212 Chapter Seventeen

• Add the value at address 0005h to the accumulator.
• Store the contents of the accumulator at address 0006h.
• Load the value at address 0007h into the accumulator.
• Add the value at address 0008h to the accumulator.
• Add the value at address 0009h to the accumulator.
• Store the contents of the accumulator at address 000Ah.
• Halt the workings of the automated adder.

Notice that just as in the original automated adder, each byte of memory is
still being addressed sequentially beginning at 0000h. The original automated
adder simply added the contents of the memory at that address to the con-
tents of the accumulator. In some cases, we still want to do that. But we also
sometimes want to Load the accumulator directly with a value in memory
or to Store the contents of the accumulator in memory. And after everything
is done, we want the automated adder to simply stop so that the contents
of the RAM array can be examined.

How can we accomplish this? Well, it’s not sufficient to simply key in a
bunch of numbers in RAM and expect the automated adder to do the right
thing. For each number in RAM, we also need some kind of numeric code
that indicates what the automated adder is to do: Load, Add, Store, or Halt.

Perhaps the easiest (but certainly not the cheapest) way to store these codes
is in a whole separate RAM array. This second RAM array is accessed at the
same time as the original RAM array. But instead of containing numbers to
be added, it contains the codes that indicate what the automated adder is
supposed to do with the corresponding address in the original RAM array.
These two RAM arrays can be labeled Data (the original RAM array) and
Code (the new one):

64Kx8
RAM

DO 8

Control
Panel

64Kx8
RAM

Addr

DO 8

Control
Panel

“Code”

“Data”8

16

DI

Addr

16-Bit
Counter

W

Automation 213

We’ve already established that our new automated adder needs to be able
to write sums into the original RAM array (labeled Data). But the new RAM
array (labeled Code) will be written to solely through the control panel.

We need four codes for the four actions we want the new automated
adder to do. These codes can be anything we want to assign. Here are four
possibilities:

Operation Code
Load 10h
Store 11h
Add 20h
Halt FFh

So to perform the three sets of addition in the example I just outlined, you’ll
need to use the control panel to store the following values in the Code
RAM array:

10h

20h

20h

10h

20h

10h

20h

20h

0000h:

0004h:

0007h:

Store

Store

Store

11h

11h

11h

FFh

Load

Add

Add

Load

Add

Load

Add

Add

Halt000Bh:

You might want to compare the contents of this RAM array with the RAM
array containing the data we want to add (shown on page 211). You’ll no-
tice that each code in the Code RAM corresponds to a value in the Data
RAM that is to be loaded into or added to the accumulator, or the code
indicates that a value is to be stored back in memory. Numeric codes used
in such a manner are often called instruction codes, or operation codes,
or (most concisely) opcodes. They “instruct” circuitry to perform a cer-
tain “operation.”

As I mentioned earlier, the output of the 8-bit latch in the original automated
adder needs to be an input to the Data RAM array. That’s how the Store in-
struction works. Another change is necessary: Originally, the output of the
8-Bit Adder was the input to the 8-bit latch. But now, to carry out the Load
instruction, the output of the Data RAM array must sometimes be the in-
put to the 8-bit latch. What’s needed is a 2-Line-to-1-Line Data Selector. The
revised automated adder looks like the illustration on the next page.

214 Chapter Seventeen

Clk

Clr

Clk

Clr

S

8-Bit Latch

8

8

8

CI8-Bit
Adder

64Kx8
RAM

DO 8

Control
Panel

64Kx8
RAM

Addr

DO

Control
Panel

“Code”

“Data”

16

DI

2-to-1 Selector

8

Addr

16-Bit
Counter

W

This diagram is missing a few pieces, but it shows all the 8-bit data paths
between the various components. The 16-bit counter provides an address
for the two RAM arrays. The output of the Data RAM array goes into the
8-Bit Adder, as usual, to perform the Add instruction. But the input to the
8-bit latch can be either the output of the Data RAM array (in the case
of a Load instruction) or the output of the adder (in the case of an Add
instruction). This situation requires a 2-to-1 Selector. The output of the latch
circles back to the adder, as usual, but it’s also the data input of the Data
RAM array for a Store instruction.

What this diagram is missing are all the little signals that control these
components, known collectively as the control signals. These include the
Clock and Clear inputs to the 16-bit counter, the Clock and Clear inputs to
the 8-bit latch, the Write input to the Data RAM array, and the Select in-
put to the 2-to-1 Selector. Some of these signals will obviously be based on
the output of the Code RAM array. For example, the Select input to the 2-
to-1 Selector must be 0 (selecting the Data RAM output) if the output of the
Code RAM array indicates a Load instruction. The Write input to the Data
RAM array must be 1 only when the opcode is a Store instruction. These
control signals can be generated by various combinations of logic gates.

Automation 215

With a minimal amount of extra hardware and the addition of a new
opcode, we can also persuade this circuit to subtract a number from the value
in the accumulator. The first step is to expand the table of operation codes:

Operation Code
Load 10h
Store 11h
Add 20h

Subtract 21h
Halt FFh

The codes for Add and Subtract differ only by the least-significant bit of the
code value, which we’ll call C0. If the operation code is 21h, the circuit should
do the same thing it does for an Add instruction, except that the data out from
the Data RAM array is inverted before it goes into the adder, and the carry
input to the adder is set to 1. The C0 signal can perform both those tasks in
this revised automated adder that includes an inverter:

Clk

Clr

Clk

Clr

S

8-Bit Latch

8

8

8

CI 8-Bit
Adder

64Kx8
RAM

DO 8

Control
Panel

64Kx8
RAM

Addr

DO

Control
Panel

“Code”

“Data”

16

DI

2-to-1 Selector

8

Inverter

8

Addr

16-Bit
Counter

C0

W

216 Chapter Seventeen

Now suppose we wish to add 56h and 2Ah together and then subtract
38h from the sum. You can do it with the following codes and data stored
in the two RAM arrays:

Result goes here

10h

20h

21h

FFh

0000h:

Store11h

Load

Add

Subtract

Halt

56h

2Ah

38h

0000h:

“Data”“Code”

After the Load operation, the accumulator contains the value 56h. After the
Add operation, the accumulator contains the sum of 56h and 2Ah, or 80h.
The Subtract operation causes the bits of the next value in the Data RAM
array (38h) to be inverted. The inverted value C7h is added to 80h with the
carry input of the adder set to 1:

C7h
+ 80h
+ 1h

48h

The result is 48h. (In decimal, 86 plus 42 minus 56 equals 72.)
One persistent problem that hasn’t yet been adequately addressed is the

meager 8-bit data width of the adder and everything else that’s attached to
it. In the past, the only solution I’ve offered is to connect two 8-Bit Adders
(and two of mostly everything else) together to get 16-bit devices.

But a much less expensive solution is possible. Suppose you want to add
two 16-bit numbers, for example:

76ABh
+ 232Ch

This 16-bit addition is the same as separately adding this rightmost byte (of-
ten called the low-order byte):

ABh
+ 2Ch

D7h

and then the leftmost, or high-order, byte:

76h
+ 23h

99h

for a result of 99D7h. So if we store the two 16-bit numbers in memory
like this:

Automation 217

High-order byte result

10h

20h

11h

20h

0000h:

Load10h

Load

Add

Store

Add

ABh

2Ch

“Data”“Code”

11h Store

FFh Halt

76h

23h

Low-order byte result

0000h:

the result D7h will be stored at address 0002h, and the result 99h will be
stored at address 0005h.

Of course, this won’t work all the time. It works for the numbers I’ve cho-
sen as an example, but what if the two 16-bit numbers to be added were 76ABh
and 236Ch? In that case, adding the 2 low-order bytes results in a carry:

ABh
+ 6Ch
117h

This carry must be added to the sum of the 2 high-order bytes:

1h
+ 76h
+ 23h

9Ah

for a final result of 9A17h.
Can we enhance the circuitry of our automated adding machine to add

two 16-bit numbers correctly? Yes, we can. All we need do is save the Carry
Out bit from the 8-Bit Adder when the first addition is performed and then
use that Carry Out bit as the Carry Input bit to the next addition. How can
a bit be saved? By a 1-bit latch, of course; this time, the latch is known as
the Carry latch.

To use the Carry latch, another operation code is needed. Let’s call it Add
with Carry. When you’re adding 8-bit numbers together, you use the regu-
lar old Add instruction. The carry input to the adder is 0, and the carry
output from the adder is latched in the Carry latch (although it need not be
used at all).

If you want to add two 16-bit numbers together, you use the regular Add
instruction for adding the low-order bytes. The carry input to the adder is 0
and the carry output is latched in the Carry latch. To add the 2 high-order
bytes, you use the new Add with Carry instruction. In this case, the two num-
bers are added using the output of the Carry latch as the carry input to the
adder. So if the first addition resulted in a carry, that carry bit is used in the
second addition. If no carry resulted, the output from the Carry latch is 0.

218 Chapter Seventeen

If you’re subtracting one 16-bit number from another, you need another
new instruction; this one is called Subtract with Borrow. Normally, a Sub-
tract instruction requires that you invert the subtrahend and set the carry
input of the adder to 1. A carry out of 1 is normal and should usually be
ignored. If you’re subtracting a 16-bit number, however, that carry output
should be saved in the Carry latch. In the second subtraction, the carry in-
put to the adder should be set to the result of the Carry latch.

With the new Add with Carry and Subtract with Borrow operations, we
have a total of seven opcodes so far:

Operation Code
Load 10h
Store 11h
Add 20h

Subtract 21h
Add with Carry 22h

Subtract with Borrow 23h
Halt FFh

The number sent to the adder is inverted for a Subtract or a Subtract with
Borrow operation. The carry output of the adder is the data input to the Carry
latch. The latch is clocked whenever an Add, Subtract, Add with Carry, or
Subtract with Borrow operation is being performed. The carry input of the
8-Bit Adder is set to 1 when a Subtract operation is performed or when the
data output of the Carry latch is 1 and an Add with Carry or Subtract with
Borrow operation is being performed.

Keep in mind that the Add with Carry instruction causes the carry input
of the 8-Bit Adder to be set to 1 only if the previous Add or Add with Carry
instruction resulted in a carry output from the adder. Thus you use the Add
with Carry instruction whenever you’re adding multibyte numbers whether
or not the operation is actually needed. To properly code the 16-bit addi-
tion shown earlier, you use

10h

20h

11h

22h

0000h:

Load10h

Load

Add

Store

Add with Carry

ABh

2Ch

“Data”“Code”

11h Store

FFh Halt

76h

23h

0000h:

High-order byte result

Low-order byte result

This works correctly regardless of what the numbers are.
With these two new opcodes, we’ve greatly expanded the scope of the

machine. No longer are we restricted to adding 8-bit values. By repeated use

Automation 219

of the Add with Carry instruction, we can now add 16-bit values, 24-bit val-
ues, 32-bit values, 40-bit values, and so on. Suppose we want to add the 32-
bit values 7A892BCDh and 65A872FFh. We need one Add instruction and
three Add with Carry instructions:

10h

20h

11h

22h

0000h:

Load10h

Load

Add

Store

Add with Carry

CDh

FFh

“Data”“Code”

11h Store

10h Load

2Bh

72h

0000h:

Next-highest–byte result

89h

22h A8h

11h

10h 7Ah

22h 65h

11h

FFh

Add with Carry

Store

Load

Add with Carry

Store

Halt

Lowest-byte result

Next-highest–byte result

Highest-byte result

Of course, actually keying these numbers into memory isn’t the most rewarding
job around. Not only do you have to use switches to represent binary num-
bers, but the numbers aren’t stored in consecutive addresses. For example,
the number 7A892BCDh goes into addresses 0000h, 0003h, 0006h, and
0009h starting with the least-significant byte. To get the final result, you have
to examine the values located at addresses 0002h, 0005h, 0008h, and 000Bh.

Moreover, the current design of our automated adder doesn’t allow the
reuse of results in subsequent calculations. Suppose we want to add three
8-bit numbers together and then subtract an 8-bit number from that sum and
store the result. That would require a Load instruction, two Add instruc-
tions, a Subtract, and a Store. But what if we also wanted to subtract other
numbers from that original sum? That sum isn’t accessible. We’d have to
recalculate it every time we needed it.

The problem is that we’ve built an automated adder that addresses the
Code memory and the Data memory simultaneously and sequentially begin-
ning at address 0000h. Each instruction in the Code memory corresponds
to a location in the Data memory at the same address. Once a Store instruc-
tion causes something to be stored in the Data memory, that value can’t later
be loaded back into the accumulator.

To fix this problem, I’m going to make a fundamental and excruciating
change to the automated adder that will at first seem insanely complicated.
But in time, you’ll see (I hope) that it opens a wide door of flexibility.

220 Chapter Seventeen

Here we go. We currently have seven opcodes:

Operation Code
Load 10h
Store 11h
Add 20h

Subtract 21h
Add with Carry 22h

Subtract with Borrow 23h
Halt FFh

Each of these codes occupies 1 byte in memory. With the exception of the
Halt code, I now want each of these instructions to require 3 bytes of memory.
The first byte will be the code itself, and the next 2 bytes will be a 16-bit memory
location. For the Load instruction, that address indicates a location in the
Data RAM array that contains the byte to be loaded into the accumulator.
For the Add, Subtract, Add with Carry, and Subtract with Borrow instruc-
tions, that address indicates the location of the byte that’s to be added to or
subtracted from the accumulator. For the Store instruction, the address in-
dicates where the contents of the accumulator are to be stored.

For example, just about the simplest chore that the current automated
adder can do is add two numbers together. To do this, you set up the Code
and Data RAM arrays this way:

10h

20h

11h

0000h:

HaltFFh

Load

Add

Store

4Ah

B5h

“Data”“Code”

0000h:

Result

In the revised automated adder, each instruction (except Halt) requires
3 bytes:

10h

00h

00h

00h

0000h:

Add byte at address 0001h to accumulator20h

Load byte at address 0000h into accumulator

“Code”

01h

11h Store contents of accumulator at address 0002h

00h

02h

FFh Halt

0003h:

0006h:

0009h:

Automation 221

Each of the instruction codes (except Halt) is followed by 2 bytes that indi-
cate a 16-bit address in the Data RAM array. These three addresses happen
to be 0000h, 0001h, and 0002h, but they could be anything.

Earlier I showed how to add a pair of 16-bit numbers—specifically 76ABh
and 232Ch—using the Add and Add with Carry instructions. But we had
to store the 2 low-order bytes of these numbers at memory locations 0000h
and 0001h, and the 2 high-order bytes at 0003h and 0004h. The result of
the addition was stored at 0002h and 0005h.

With this change, we can store the two numbers and the result in a more
rational manner, and perhaps in an area of memory that we’ve never used
before:

76h

ABh

“Data”

4000h:

High-order byte of result goes here

23h

2Ch

Low-order byte of result goes here

4002h:

4004h:

These six locations don’t have to be all together like this. They can be scat-
tered anywhere throughout the whole 64-KB Data RAM array. To add these
values at these memory locations, you must set up the instructions in the
Code RAM array, like this:

10h

40h

01h

40h

0000h:

Add byte at address
4003h to accumulator20h

Load byte at address
4001h into accumulator

“Code”

03h

11h Store contents of accumu-
lator at address 4005h

40h

05h

10h

40h

00h

21h

Load byte at address
4000h into accumulator

Add with Carry the byte at
address 4002h to accumulator

40h

02h

11h Store contents of accumulator
at address 4004h

40h

04h

FFh Halt

0003h:

0006h:

0009h:

000Ch:

000Fh:

0012h:

“Code”

222 Chapter Seventeen

Notice that the 2 low-order bytes located at addresses 4001h and 4003h
are added first, with the result stored at address 4005h. The 2 high-order bytes
(at addresses 4000h and 4002h) are added with the Add with Carry instruc-
tion, and the result is stored at address 4004h. And if we were to remove
the Halt instruction and add more instructions to the Code memory, a sub-
sequent calculation could later make use of the original numbers and the sum
of them simply by referring to these memory addresses.

The key to implementing this design is to have the data output of the Code
RAM array go into three 8-bit latches. Each of these latches stores one of
the bytes of the 3-byte instruction. The first latch stores the instruction code,
the second latch stores the high-order byte of the address, and the third latch
stores the low-order address byte. The output of the second and third latches
becomes the 16-bit address of the Data RAM array:

Clk

Clr

64Kx8
RAM

Addr DO

Control
Panel

16 8 8-Bit
Latch

8-Bit
Latch

8-Bit
Latch

8

8

8

16

8

8

8 “Code”

64Kx8
RAM

Addr

DO
8 DI

Control
Panel

8 “Data”

16-Bit
Counter

Clk

W

Clk

Clk

The process of retrieving an instruction from memory is known as the
instruction fetch. In our machine, each instruction is 3 bytes in length, and it’s
retrieved from memory 1 byte at a time; the instruction fetch requires three
cycles of the Clock signal. The entire instruction cycle requires a fourth cycle
of the Clock signal. These changes certainly complicate the control signals.

The machine is said to execute an instruction when it does a series of
actions in response to the instruction code. But it’s not as if the machine is
alive or anything. It’s not analyzing the machine code and deciding what to
do. Each machine code is just triggering various control signals in a unique
way that causes the machine to do various things.

Notice that by making this machine more versatile, we’ve also slowed it
down. Using the same oscillator, it adds numbers at only one-fourth the speed
of the first automated adder I showed in this chapter. This is the result of an
engineering principle known as TANSTAAFL (pronounced tans toffle), which
means “There Ain’t No Such Thing As A Free Lunch.” Usually, whenever you
make a machine better in one way, something else tends to suffer as a result.

Automation 223

If you were actually building such a machine out of relays, the bulk of
the circuit would obviously be the two 64-KB RAM arrays. Indeed, much
earlier you might have skimped on these components and decided that ini-
tially you would need only 1 KB of memory. If you made sure you stored
everything in addresses 0000h through 03FFh, using less memory than 64
KB would work out just fine.

Still, however, you probably weren’t thrilled that you needed two RAM
arrays. And in fact, you don’t. I originally introduced two RAM arrays—
one for code and one for data—so that the architecture of the automated
adder would be as clear and simple as possible. But now that we’ve decided
to make each instruction 3 bytes long—with the second and third bytes
indicating an address where the data is located—it’s no longer necessary to
have two separate RAM arrays. Both code and data can be stored in the same
RAM array.

To accomplish this, we need to have a 2-to-1 Selector to determine how
the RAM array is addressed. Usually, the address is the 16-bit counter, as
before. The RAM Data Out is still connected to three latches that latch the
instruction code and the 2 address bytes that accompany each instruction.
But the 16-bit address is the second input to the 2-to-1 Selector. After the
address is latched, this selector allows the latched address to be the address
input to the RAM array:

Clk

Clr

64Kx8
RAM

Addr DO

Control
Panel

2-to-1
Selector

16

16

16 8 8-Bit
Latch

8-Bit
Latch

8-Bit
Latch

8

8

8

8

16

8

8

8

8 DI

“Code”

“Data”

16-Bit
Counter

W
Clk

Clk

Clk

Sel

We’ve made a lot of progress. Now it’s possible to enter the instructions
and the data in a single RAM array. For example, the diagram on the next
page shows how to add two 8-bit numbers together and subtract a third.

224 Chapter Seventeen

10h

00h

10h

00h

0000h:

Add byte at address 0011h to accumulator20h

Load byte at address 0010h into accumulator

11h

21h Subtract byte at address 0012h from accumulator

00h

12h

11h

00h

13h

FFh

Store byte in accumulator at address 0013h

Halt
...

45h

A9h

8Eh

000Ch:

0010h:

Final result goes here

As usual, the instructions begin at 0000h because that’s where the counter
starts accessing the RAM array after it has been reset. The final Halt instruc-
tion is stored at address 000Ch. We could have stored the three numbers and
the results anywhere in the RAM array (except in the first 13 bytes, of course,
because those memory locations are occupied by instructions), but we chose
to store the data starting at address 0010h.

Now suppose you discover that you need to add two more numbers to
that result. Well, you can replace all the instructions you just entered with
some new instructions, but maybe you don’t want to do that. Maybe you’d
prefer to just continue with the new instructions starting at the end of these
instructions, first replacing the Halt instruction with a new Load instruc-
tion at address 000Ch. But you also need two new Add instructions, a Store
instruction, and a new Halt instruction. Your only problem is that you have
some data stored at address 0010h. You have to move that data someplace
at a higher memory address. And you then have to change the instructions
that refer to those memory instructions.

Hmmm, you think. Maybe combining Code and Data into a single RAM
array wasn’t such a hot idea after all. But I assure you, a problem such as
this would have come up sooner or later. So let’s solve it. In this case, maybe
what you’d like to do is enter the new instructions beginning at address
0020h and the new data at address 0030h:

Automation 225

10h

00h

13h

00h

0020h:

Add byte at address 0030h to accumulator20h

Load byte at address 0013h into accumulator

30h

20h Add byte at address 0031h to accumulator

00h

31h

11h

00h

32h

FFh

Store byte in accumulator at address 0032h

Halt

43h

2Fh

0030h:

Final result goes here

...

Notice that the first Load instruction refers to the memory location 0013h,
which is where the result of the first calculation was stored.

So now we have some instructions starting at address 0000h, some data
starting at 0010h, some more instructions at 0020h, and some more data
at 0030h. We want to let the automated adding machine start at 0000h and
execute all the instructions.

We know we must remove that Halt instruction at address 000Ch, and
by remove I really mean replace it with something else. But is that sufficient?
The problem is that whatever we replace the Halt instruction with is going
to be interpreted as an instruction byte. And so will the bytes stored every
3 bytes after that—at 000Fh, and 0012h, and 0015h, and 0018h, and 001Bh,
and 001Eh. What if one of these bytes just happens to be an 11h? That’s a
Store instruction. And what if the 2 bytes following that Store instruction
happened to refer to address 0023h? That would cause the machine to write
the contents of the accumulator to that address. But that address contains
something important already! And even if nothing like this happened, the
next instruction byte that the adder retrieves from memory after the one at
001Eh will be at address 0021h, not 0020h, which is where our next real
instruction happens to be.

Are we all in agreement that we can’t just remove the Halt instruction at
address 000Ch and hope for the best?

But what we can replace it with is a new instruction called Jump. Let’s
add that to our repertoire.

226 Chapter Seventeen

Operation Code
Load 10h
Store 11h
Add 20h

Subtract 21h
Add with Carry 22h

Subtract with Borrow 23h
Jump 30h
Halt FFh

Normally, this automated adder addresses the RAM array sequentially. A
Jump instruction causes the machine to alter that pattern. Instead, it begins
addressing the RAM array at a different specified address. Such an instruc-
tion is sometimes also called a Branch instruction, or Goto, as in “go to
another place.”

In the preceding example, we can replace the Halt instruction at address
000Ch with a Jump instruction:

30h

00h

20h

000Ch: Jump to instruction at address 0020h

The 30h byte is the code for a Jump instruction. The 16-bit address that fol-
lows indicates the address of the next instruction that the automated adder
is to read.

So in the preceding example, the automated adder begins at 0000h, as
usual, and does a Load instruction, an Add, a Subtract, and a Store. It then
does the Jump instruction and continues at address 0020h with a Load, two
Add instructions, a Store, and finally Halt.

The Jump instruction affects the 16-bit counter. Whenever the automated
adder encounters a Jump instruction, the counter must somehow be forced
to output that new address that follows the Jump instruction code. This is
implemented by using the Preset and Clear inputs of the edge-triggered
D-type flip-flops that make up the 16-bit counter:

Q

D

Clk

Q
Pre

Clr

You’ll recall that the Preset and Clear inputs should both be 0 for normal
operation. But if Preset is 1, Q becomes 1. And if Clear is 1, Q becomes 0.

If you want to load a single flip-flop with a new value (which I’ll call A
for address), you can wire it like this:

Automation 227

Q

Reset

D

Clk

Q
Pre

Clr

Set It

A

Normally the Set It signal is 0. In that case, the Preset input to the flip-
flop is 0. The Clear input is also 0 unless the Reset signal is 1. This allows
the flip-flop to be cleared independently of the Set It signal. When the Set
It signal is 1, the Preset input will be 1 and the Clear input will be 0 if A is
1. If A is 0, the Preset input will be 0 and the Clear input will be 1. This means
that Q will be set to the value of A.

We need one of these for each bit of the 16-bit counter. Once loaded with
a particular value, the counter will continue counting from that value on.

Otherwise, the changes aren’t severe. The 16-bit address that’s latched
from the RAM array is an input to both the 2-to-1 Selector (which allows
this address to be an address input to the RAM array) and the 16-bit counter
for the Set It function:

Clk

Clr

64Kx8
RAM

Addr DO

Control
Panel

2-to-1
Selector

16

16

16 8 8-Bit
Latch

8-Bit
Latch

8-Bit
Latch

8

8

8

8

16

8

8

8

8 DI

“Code”

“Data”

Set It

Reset

16

Sel

16-Bit
Counter

W
Clk

Clk

Clk

228 Chapter Seventeen

Obviously, we must ensure that the Set It signal is 1 only if the instruction
code is 30h and the address has been latched.

The Jump instruction is certainly useful. But it’s not nearly as useful as
an instruction that jumps sometimes but not all the time. Such an instruc-
tion is known as a conditional jump, and perhaps the best way to show how
useful such an instruction can be is to pose a question: How can we persuade
our automated adder to multiply two 8-bit numbers? For example, how do
we get the result for something as simple as A7h times 1Ch?

Easy, right? The result of multiplying two 8-bit values is a 16-bit prod-
uct. For convenience, all three numbers involved in the multiplication are
expressed as 16-bit values. The first job is to decide where you want to put
the numbers and the product:

00h

A7h

00h

00h

1000h:

16-bit multiplicand

1Ch

16-bit multiplier

00h

1002h:

1004h: 16-bit product goes here

and here

Everyone knows that multiplying A7h and 1Ch (which is 28 in decimal)
is the same as 28 additions of A7h. So the 16-bit location at addresses 1004h
and 1005h will actually be an accumulated summation. Here’s the code for
adding A7h to that location once:

10h

10h

05h

10h

0000h:

Add byte at 1001h
to accumulator20h

Load byte at 1005h
into accumulator

01h

11h
Store contents of

accumulator at 1005h

10h

05h

10h

10h

04h

22h Add with Carry byte at
1000h to accumulator

Store contents of
accumulator at 1004h

04h

00h

11h

10h

0012h:

10h

...

Load byte at 1004h
into accumulator

0003h:

0006h: 000Fh:

000Ch:

0009h:

At the completion of these six instructions, the 16-bit value at memory
locations 1004h and 1005h will equal A7h times 1. Therefore, these six
instructions have to be repeated 27 more times in order for that 16-bit value
to equal A7h times 1Ch. You can achieve this by typing in these six

Automation 229

instructions 27 more times beginning at address 0012h. Or you can put a
Halt instruction at 0012h and press the Reset button 28 times to get the final
answer.

Of course, neither of these two options is ideal. They both require that
you do something—type in a bunch of instructions or press the Reset but-
ton—a number of times that’s proportional to one of the numbers being
multiplied. Surely you wouldn’t want to generalize this process for 16-bit
values that you want to multiply.

But what if you put a Jump instruction at 0012h? This instruction causes
the counter to start from 0000h again:

30h

00h

00h

0012h: Jump to the instruction at 0000h

This certainly does the trick (sort of). The first time through, the 16-bit value
at memory locations 1004h and 1005h will equal A7h times 1. Then the
Jump instruction will go back up to the top. At the end of the second time
through, the 16-bit result will equal A7h times 2. Eventually, it will equal A7h
times 1Ch, but there’s no stopping it. It just keeps going and going and going.

What we want is a Jump instruction that starts the process over again only
as many times as are needed. That’s the conditional jump. And it’s really not
that hard to implement. The first thing we’ll want to add is a 1-bit latch
similar to the Carry latch. This will be called the Zero latch because it will
latch a value of 1 only if the output of the 8-Bit Adder is all zeros:

Zero
flag

DI

Clk

DO

Clr

8-Bit Adder

The output of that 8-bit NOR gate is 1 only if all the inputs are 0. Like the
Clock input of the Carry latch, the Clock input of the Zero latch latches a
value only when an Add, Subtract, Add with Carry, or Subtract with Borrow
instruction is being performed. This latched value is known as the Zero flag.
Watch out because it could seem as if it’s working backward: The Zero flag
is 1 if the output of the adder is all zeros, and the Zero flag is 0 if output of
the adder is not all zeros.

230 Chapter Seventeen

With the Carry latch and the Zero latch, we can expand our repertoire
of instructions by four:

Operation Code
Load 10h
Store 11h
Add 20h

Subtract 21h
Add with Carry 22h

Subtract with Borrow 23h
Jump 30h

Jump If Zero 31h
Jump If Carry 32h

Jump If Not Zero 33h
Jump If Not Carry 34h

Halt FFh

For example, the Jump If Not Zero instruction jumps to the specified ad-
dress only if the output of the Zero latch is 0. In other words, there will be
no jump if the last Add, Subtract, Add with Carry, or Subtract with Borrow
instruction resulted in 0. Implementing this design is just an add-on to the
control signals that implement the regular Jump command: If the instruc-
tion is Jump If Not Zero, the Set It signal on the 16-bit counter is triggered
only if the Zero flag is 0.

Now all that’s necessary to make the code shown above multiply two
numbers are the following instructions starting at address 0012h:

10h

10h

03h

00h

0012h:

Add byte at address 001Eh to accumulator20h

Load byte at address 1003h into accumulator

1Eh

11h Store byte in accumulator at address 1003h

10h

03h

33h

00h

00h

FFh Halt001Eh:

Jump to 0000h if the zero flag is not 1

0015h:

0018h:

001Bh:

Automation 231

The first time through, the 16-bit location at 0004h and 0005h contains A7h
times 1, as we’ve already established. The instructions here load the byte from
location 1003h into the accumulator. This is 1Ch. This byte is added to the
value at location 001Eh. This happens to be the Halt instruction, but of
course it’s also a valid number. Adding FFh to 1Ch is the same as subtract-
ing 1 from 1Ch, so the result is 1Bh. This isn’t 0, so the Zero flag is 0. The
1Bh byte is stored back at address 1003h. Next is a Jump If Not Zero in-
struction. The Zero flag isn’t set to 1, so the jump occurs. The next instruc-
tion is the one located at address 0000h.

Keep in mind that the Store instruction doesn’t affect the Zero flag. The
Zero flag is affected only by the Add, Subtract, Add with Carry, or Subtract
with Borrow instruction, so it will remain the same value that was set the
last time one of these instructions occurred.

The second time through, the 16-bit location at 1004h and 1005h will
contain the value A7h times 2. The value 1Bh is added to FFh to get the result
1Ah. That’s not 0, so back to the top.

On the twenty-eighth time through, the 16-bit location at 1004h and
1005h will contain the value A7h times 1Ch. At location 1003h will be the
value 1. This will be added to FFh and the result will be zero. The Zero flag
will be set! So the Jump If Not Zero instruction will not jump back to 0000h.
Instead, the next instruction is a Halt. We’re done.

I now assert that at long last we’ve assembled a piece of hardware that we
can honestly call a computer. To be sure, it’s a primitive computer, but it’s a
computer nonetheless. What makes the difference is the conditional jump.
Controlled repetition or looping is what separates computers from calculators.
I’ve just demonstrated how a conditional jump instruction allows this machine
to multiply two numbers. In a similar way, it can also divide two numbers.
Moreover, it’s not limited to 8-bit values. It can add, subtract, multiply, and
divide 16-bit, 24-bit, 32-bit, or even larger numbers. And if it can do this,
it can calculate square roots, logarithms, and trigonometric functions.

Now that we’ve assembled a computer, we can start using words that
sound like we’re talking about computers.

The particular computer that we’ve assembled is classified as a digital
computer because it works with discrete numbers. At one time, there were
also analog computers that are now largely extinct. (Digital data is discrete
data—data that has certain specific distinct values. Analog information is
continuous and varies throughout an entire range.)

A digital computer has four main parts: a processor, memory, at least
one input device, and least one output device. In our machine, the memory
is the 64-KB RAM array. The input and output devices are the rows of
switches and lightbulbs on the RAM array control panel. These switches and
lightbulbs let us (the human beings in this show) put numbers into memory
and examine the results.

The processor is everything else. A processor is also called a central
processing unit, or CPU. More casually, the processor is sometimes called

232 Chapter Seventeen

the brain of the computer, but I’d like to avoid using such terminology,
mainly because what we designed in this chapter hardly seems anything
like a brain to me. (The word microprocessor is very common these days.
A microprocessor is just a processor that—through use of technology I’ll
describe in Chapter 18—is very small. What we’ve built out of relays in this
chapter could hardly be defined as a micro anything!)

The processor that we’ve built is an 8-bit processor. The accumulator is
8 bits wide and most of the data paths are 8 bits wide. The only 16-bit data
path is the address to the RAM array. If we used 8 bits for that, we’d be
limited to 256 bytes of memory rather than 65,536 bytes, and that would
be quite restrictive.

A processor has several components. I’ve already identified the accumulator,
which is simply a latch that holds a number inside the processor. In our
computer, the 8-bit inverter and the 8-Bit Adder together can be termed the
Arithmetic Logic Unit, or ALU. Our ALU performs only arithmetic, specifically
addition and subtraction. In slightly more sophisticated computers (as we’ll
see), the ALU can also perform logical functions, such as AND, OR, and
XOR. The 16-bit counter is called a Program Counter.

The computer that we’ve built is constructed from relays, wires, switches,
and lightbulbs. All of these things are hardware. In contrast, the instructions
and other numbers that we enter into memory are called software. It’s “soft”
because it can be changed much more easily than the hardware can.

When we speak of computers, the word software is almost synonymous
with the term computer program, or, more simply, program. Writing software
is known as computer programming. Computer programming is what I was
doing when I determined the series of instructions that would allow our
computer to multiply two numbers together.

Generally, in computer programs, we can distinquish between code (which
refers to the instructions themselves) and data, which are the numbers that
the code manipulates. Sometimes the distinction isn’t so obvious, as when
the Halt instruction served double duty as the number −1.

Computer programming is sometimes also referred to as writing code, or
coding, as in, “I spent my vacation coding” or “I was up until seven this
morning banging out some code.” Sometimes computer programmers are
known as coders, although some might consider this a derogatory term. Such
programmers might prefer to be called software engineers.

The operation codes that a processor responds to (such as 10h and 11h
for Load and Store) are known as machine codes, or machine language.
The term language is used because it’s akin to a spoken or written human
language in that a machine “understands” it and responds to it.

I’ve been referring to the instructions that our machine carries out by
rather long phrases, such as Add with Carry. Commonly, machine codes
are assigned short mnemonics that are written with uppercase letters.

Automation 233

These mnemonics can be as short as 2 or 3 letters. Here’s a set of possible
mnemonics for the machine codes that our computer recognizes:

Operation Code Mnemonic
Load 10h LOD
Store 11h STO
Add 20h ADD

Subtract 21h SUB
Add with Carry 22h ADC

Subtract with Borrow 23h SBB
Jump 30h JMP

Jump If Zero 31h JZ
Jump If Carry 32h JC

Jump If Not Zero 33h JNZ
Jump If Not Carry 34h JNC

Halt FFh HLT

These mnemonics are particularly useful when combined with a couple
of other shortcuts. For example, instead of saying something long-winded
like, “Load byte at address 1003h into accumulator,” we can instead write
the statement:

LOD A,[1003h]

The A and the [1003] that appear to the right of the mnemonic are called
arguments that indicate what’s going on with this particular Load instruction.
The arguments are written with a destination on the left (the A stands for
accumulator) and a source on the right. The brackets indicate that the
accumulator should be loaded not with the value 1003h but with the value
stored in memory at address 1003h.

Similarly, the instruction “Add byte at address 001Eh to accumulator”
can be shortened to

ADD A,[001Eh]

and “Store contents of accumulator at address 1003h” is

STO [1003h],A

Notice that the destination (a memory location for the Store instruction) is
still on the left and the source is on the right. The contents of the accumu-
lator must be stored in memory at address 1003h. The wordy “Jump to
0000h if the Zero flag is not 1” is more concisely written as

JNZ 0000h

The brackets aren’t used in this instruction because the instruction jumps to
address 0000h, not to the value that might be stored at address 0000h.

234 Chapter Seventeen

It’s convenient to write these instructions in this type of shorthand because
the instructions can be listed sequentially in a readable way that doesn’t
require us to draw boxes of memory locations. To indicate that a particular
instruction is stored at a particular address, you can use the hexadecimal
address followed by a colon, such as

0000h: LOD A,[1005h]

And here’s how we can indicate some data stored at a particular address:

1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: 00h, 00h

The 2 bytes separated by commas indicate that the first byte is stored at the
address on the left and the second byte is stored at the next address. These
three lines are equivalent to

1000h: 00h, A7h, 00h, 1Ch, 00h, 00h

So the entire multiplication program can be written as a series of state-
ments like this:

0000h: LOD A,[1005h]
 ADD A,[1001h]
 STO [1005h],A

 LOD A,[1004h]
 ADC A,[1000h]
 STO [1004h],A

 LOD A,[1003h]
 ADD A,[001Eh]
 STO [1003h],A

 JNZ 0000h

001Eh: HLT

1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: 00h, 00h

The judicious use of blank lines and other white space is simply to make the
whole program more readable for human beings like you and me.

It’s better not to use actual numeric addresses when writing code because
they can change. For example, if you decided to store the numbers at memory
locations 2000h through 20005h, you’d need to rewrite many of the state-
ments as well. It’s better to use labels to refer to locations in memory. These
labels are simply words, or they look almost like words, like this:

Automation 235

BEGIN: LOD A,[RESULT + 1]
 ADD A,[NUM1 + 1]
 STO [RESULT + 1],A

 LOD A,[RESULT]
 ADC A,[NUM1]
 STO [RESULT],A

 LOD A,[NUM2 + 1]
 ADD A,[NEG1]
 STO [NUM2 + 1],A

 JNZ BEGIN

NEG1: HLT

NUM1: 00h, A7h
NUM2: 00h, 1Ch
RESULT: 00h, 00h

Notice that the labels NUM1, NUM2, and RESULT all refer to memory
locations where 2 bytes are stored. In these statements, the labels NUM1 + 1,
NUM2 + 1, and RESULT + 1 refer to the second byte after the particular
label. Notice the NEG1 (negative one) label on the HLT instruction.

Finally, if there’s a chance that you’ll forget what these statements do, you
can add little comments, which are in English and are separated from the
actual statements by a semicolon:

BEGIN: LOD A,[RESULT + 1]
 ADD A,[NUM1 + 1] ; Add low-order byte
 STO [RESULT + 1],A

 LOD A,[RESULT]
 ADC A,[NUM1] ; Add high-order byte
 STO [RESULT],A

 LOD A,[NUM2 + 1]
 ADD A,[NEG1] ; Decrement second number
 STO [NUM2 + 1],A

 JNZ BEGIN

NEG1: HLT

NUM1: 00h, A7h
NUM2: 00h, 1Ch
RESULT: 00h, 00h

236 Chapter Seventeen

I’m showing you here a type of computer programming language known as
assembly language. It’s something of a compromise between the naked num-
bers of machine code and the wordiness of our English descriptions of the
instructions, coupled with symbolic representations of memory addresses.
People are sometimes confused about the difference between machine code
and assembly language because they’re really just two different ways of
looking at the same thing. Every statement in assembly language corresponds
to certain specific bytes of machine code.

If you were to write a program for the computer that we’ve built in this
chapter, you’d probably want to write it first (on paper) in assembly language.
Then, once you were satisfied that it was mostly correct and ready to be
tested, you would hand assemble it: This means that you would manually
convert each assembly-language statement to machine code, still on paper.
At that point, you can use the switches to enter the machine code into the
RAM array and run the program, which means to let the machine execute
the instructions.

When you’re learning the concepts of computer programming, it’s never
too early to get acquainted with bugs. When you’re coding—particularly in
machine code—it’s very easy to make mistakes. It’s bad enough to enter a
number incorrectly, but what happens when you enter an instruction code
incorrectly? If you enter a 11h (the Store instruction) when you really meant
to enter a 10h (the Load instruction), not only will the machine not load in
the number it’s supposed to, but that number will be overwritten by what-
ever happens to be in the accumulator.

Some bugs can have unpredictable results. Suppose you use the Jump
instruction to jump to a location that doesn’t contain a valid instruction
code. Or suppose you accidentally use the Store instruction to write over
instructions. Anything can happen (and often does).

There’s even a bug in my multiplication program. If you run it twice,
the second time through it will multiply A7h by 256 and add that result
to the result already calculated. This is because after you run the program
once, the number at address 1003h will be 0. When you run it the second
time, FFh will be added to that value. The result won’t be 0, so the program
will keep running until it is.

We’ve seen that this machine can do multiplication, and in a similar way
it can also do division. I’ve also asserted that this machine can use these
primitive functions to do square roots, logarithms, and trigonometric func-
tions. All a machine needs is the hardware to add and subtract and some way
to use conditional jump instructions to execute the proper code. As a pro-
grammer might say, “I can do the rest in software.”

Of course, this software might be quite complex. Many whole books have
been written that describe the algorithms that programmers use to solve
specific problems. We’re not yet ready for that. We’ve been thinking about
whole numbers and haven’t taken a crack at how to represent decimal frac-
tions in the computer. I’ll get to that in Chapter 23.

Automation 237

I’ve mentioned several times that all the hardware to build these devices
was available over a hundred years ago. But it’s unlikely that the computer
shown in this chapter could have been built at that time. Many of the con-
cepts implicit in its design weren’t apparent when relay computers were first
built in the mid-1930s and only started to be understood around 1945 or
so. Until that time, for example, people were still trying to build comput-
ers that internally used decimal numbers rather than binary. And computer
programs weren’t always stored in memory but instead were sometimes
coded on paper tape. In particular, in the early days of computers, memory
was expensive and bulky. Building a 64-KB RAM array from five million
telegraph relays would have been as absurd one hundred years ago as it is now.

It’s time to put what we’ve done in perspective and to review the history
of calculation and computing devices and machines. Perhaps we shall find
that we don’t have to build this elaborate relay computer after all. As I
mentioned in Chapter 12, relays were eventually replaced with electronic
devices such as vacuum tubes and transistors. Perhaps we shall also find that
someone else has built something that’s equivalent to the processor and the
memory we designed but that can fit in the palm of your hand.

238

Chapter Eighteen

From Abaci to Chips

hroughout recorded history, people have invented numerous clever
gadgets and machines in a universal quest to make mathematical
calculations just a little bit easier. While the human species seem-

ingly has an innate numerical ability, we also require frequent assistance. We
can often conceive of problems that we can’t easily solve ourselves.

The development of number systems can be seen as an early tool to help
people keep track of commodities and property. Many cultures, including
the ancient Greeks and native Americans, seem to have counted with the as-
sistance also of pebbles or kernels of grain. In Europe, this led to counting
boards, and in the Middle East to the familiar frame-and-bead abacus:

Although commonly associated with Asian cultures, the abacus seems to have
been introduced to China by traders around 1200 CE.

No one has ever really enjoyed multiplication and division, but few people
have done anything about it. The Scottish mathematician John Napier
(1550–1617) was one of those few. He invented logarithms for the specific

T

From Abaci to Chips 239

purpose of simplifying these operations. The product of two numbers is
simply the sum of their logarithms. So if you need to multiply two numbers,
you look them up in a table of logarithms, add the numbers from the table,
and then use the table in reverse to find the actual product.

The construction of tables of logarithms occupied some of the greatest
minds of the subsequent 400 years while others designed little gadgets to use
in place of these tables. The slide rule has a long history beginning with a
logarithmic scale made by Edmund Gunter (1581–1626) and refined by
William Oughtred (1574–1660). The history of the slide rule effectively
ended in 1976, when the Keuffel & Esser Company presented its last manu-
factured slide rule to the Smithsonian Institution in Washington D.C. The
cause of death was the hand-held calculator.

Napier also invented another multiplication aid, which is composed of
strips of numbers usually inscribed on bone, horn, or ivory and hence re-
ferred to as Napier’s Bones. The earliest mechanical calculator was a some-
what automated version of Napier’s bones built around 1620 by Wilhelm
Schickard (1592–1635). Other calculators based on interlocking wheels,
gears, and levers are almost as old. Two of the more significant builders of
mechanical calculators were the mathematicians and philosophers Blaise
Pascal (1623–1662) and Gottfried Wilhelm von Leibniz (1646–1716).

You’ll no doubt recall what a nuisance the carry bit was in both the origi-
nal 8-Bit Adder and the computer that (among other things) automated the
addition of numbers wider than 8 bits. The carry seems at first to be just a
little quirk of addition, but in adding machines, the carry is really the cen-
tral problem. If you’ve designed an adding machine that does everything
except the carry, you’re nowhere close to being finished!

How successfully the carry is dealt with is a key to the evaluation of old
calculating machines. For example, Pascal’s design of the carry mechanism
prohibited the machine from subtracting. To subtract, the nines’ complement
had to be added the way that I demonstrated in Chapter 13. Successful
mechanical calculators that real people could use weren’t available until the
late nineteenth century.

One curious invention that was to have a later influence on the history
of computing—as well as a profound influence on the textile industry—was
an automated loom developed by Joseph Marie Jacquard (1752–1834). The
Jacquard loom (circa 1801) used metal cards with holes punched in them
(much like those of a player piano) to control the weaving of patterns in
fabrics. Jacquard’s own tour de force was a self-portrait in black and white
silk that required about 10,000 cards.

In the eighteenth century (and indeed up to the 1940s), a computer was
a person who calculated numbers for hire. Tables of logarithms were always
needed, and trigonometric tables were essential for nautical navigation us-
ing the stars and planets. If you wanted to publish a new set of tables, you
would hire a bunch of computers, set them to work, and then assemble all
the results. Errors could creep in at any stage of this process, of course, from
the initial calculation to setting up the type to print the final pages.

240 Chapter Eighteen

The desire to eliminate errors from mathe-
matical tables motivated the work of Charles
Babbage (1791–1871), a British mathematician
and economist who was almost an exact con-
temporary of Samuel Morse.

At the time, mathematical tables (of loga-
rithms, for example) were not created by calcu-
lating an actual logarithm for each and every
entry in the table. This would have taken far too
long. Instead, the logarithms were calculated for
select numbers, and then numbers in between
were calculated by interpolation, using what are
called differences in relatively simple calculations.

Beginning about 1820, Babbage believed that he could design and build
a machine that would automate the process of constructing a table, even to
the point of setting up type for printing. This would eliminate errors. He con-
ceived the Difference Engine, and basically it was a big mechanical adding
machine. Multidigit decimal numbers were represented by geared wheels that
could be in any of 10 positions. Negatives were handled using the ten’s
complement. Despite some early models that showed Babbage’s design to be
sound and some grants from the British government (never enough, of
course), the Difference Engine was never completed. Babbage abandoned
work on it in 1833.

By that time, however, Babbage had an even better idea. It was called the
Analytical Engine, and through repeated design and redesign (with a few
small models and parts of it actually built) it consumed Babbage off and on
until his death. The Analytical Engine is the closest thing to a computer that
the nineteenth century has to offer. In Babbage’s design, it had a store (com-
parable to our concept of memory) and a mill (the arithmetic unit). Multi-
plication could be handled by repeated addition, and division by repeated
subtraction.

What’s most intriguing about the Analytical Engine is that it could be
programmed using cards that were adapted from the cards used in the Jac-
quard pattern-weaving loom. As Augusta Ada Byron, Countess of Lovelace
(1815–1852), put it (in notes to her translation of an article written by an
Italian mathematician about Babbage’s Analytical Engine), “We may say that
the Analytical Engine weaves algebraical patterns just as the Jacquard-loom
weaves flowers and leaves.”

Babbage seems to be the first person to understand the importance of a
conditional jump in computers. Here’s Ada Byron again: “A cycle of opera-
tions, then, must be understood to signify any set of operations which is
repeated more than once. It is equally a cycle, whether it be repeated twice
only, or an indefinite number of times; for it is the fact of a repetition oc-
curring at all that constitutes it such. In many cases of analysis there is a
recurring group of one or more cycles; that is, a cycle of cycle, or a cycle of
cycles.”

From Abaci to Chips 241

Although a difference engine was eventually built by father-and-son team
Georg and Edvard Scheutz in 1853, Babbage’s engines were forgotten for
many years, only to be resurrected in the 1930s when people began search-
ing for the roots of twentieth century computing. By that time, everything
Babbage had done had already been surpassed by later technology, and he
had little to offer the twentieth century computer engineer except a preco-
cious vision of automation.

Another milestone in the history of computing resulted from Article I,
Section 2, of the Constitution of the United States of America. Among other
things, this section calls for a census to be taken every ten years. By the time
of the 1880 census, information was accumulated on age, sex, and national
origin. The data amassed took about seven years to process.

Fearing that the 1890 census would take longer than a decade to process,
the Census Office explored the possibility of automating the system and chose
machinery developed by Herman Hollerith
(1860–1929), who had worked as a statistician
for the 1880 census.

Hollerith’s plan involved manila punch cards
6 5⁄8 × 3 1⁄4 inches in size. (It’s unlikely that Hol-
lerith knew about Charles Babbage’s use of cards
to program his Analytical Engine, but he was
almost certainly familiar with the use of cards
in the Jacquard loom.) The holes in these cards
were organized into 24 columns of 12 posi-
tions each, for a total of 288 positions. These
positions represented certain characteristics of
a person being tallied in the census. The census
taker indicated these characteristics by punching 1⁄4-inch square holes into
the appropriate positions on the card.

This book has probably so accustomed you to thinking in terms of binary
codes that you might immediately assume that a card with 288 possible
punches is capable of storing 288 bits of information. But the cards weren’t
used that way.

For example, a census card used in a purely binary system would have
one position for sex. It would be either punched for male or unpunched for
female (or the other way around). But Hollerith’s cards had two positions for
sex. One position was punched for male, the other for female. Likewise, the
census taker indicated a subject’s age by making two punches. The first punch
designated a five-year age range: 0 through 4, 5 through 9, 10 through 14,
and so forth. The second punch was in one of five positions to indicate the
precise age within that range. Coding the age required a total of 28 positions
on the card. A pure binary system would require just 7 positions to code any
age from 0 through 127.

We should forgive Hollerith for not implementing a binary system for
recording census information: Converting an age to binary numbers was a
little too much to ask of the 1890 census takers. There’s also a practical
reason why a system of punched cards can’t be entirely binary. A binary

242 Chapter Eighteen

system would produce cases in which all the holes (or nearly all) were
punched, rendering the card very fragile and structurally unsound.

Census data is collected so that it can be counted, or tabulated. You want
to know how many people live in each census district, of course, but it’s
also interesting to obtain information about the age distribution of the
population. For this, Hollerith created a tabulating machine that combined
hand operation and automation. An operator pressed a board containing 288
spring-loaded pins on each card. Pins corresponding to punched holes in the
cards came into contact with a pool of mercury that completed an electrical
circuit that triggered an electromagnet that incremented a decimal counter.

Hollerith also used electromagnets in a machine that sorted cards. For
example, you might want to accumulate separate age statistics for each
occupation that you’ve tallied. You first need to sort the cards by occupa-
tion and then accumulate the age statistics separately for each. The sorting
machine used the same hand press as the tabulator, but the sorter had elec-
tromagnets to open a hatch to one of 26 separate compartments. The op-
erator dropped the card into the compartment and manually closed the hatch.

This experiment in automating the 1890 census was a resounding success.
All told, over 62 million cards were processed. They contained twice as much
data as was accumulated in the 1880 census, and the data was processed in
about one-third the time. Hollerith and his inventions became known around
the world. In 1895, he even traveled to Moscow and succeeded in selling his
equipment for use in the very first Russian census, which occurred in 1897.

Herman Hollerith also set in motion a long trail of events. In 1896, he
founded the Tabulating Machine Company to lease and sell the punch-card
equipment. By 1911, with the help of a couple of mergers, it had become the
Computing-Tabulating-Recording Company, or C-T-R. By 1915, the presi-
dent of C-T-R was Thomas J. Watson (1874–1956), who in 1924 changed
the name of the company to International Business Machines Corporation,
or IBM.

By 1928, the original 1890 census cards had evolved into the famous “do
not spindle, fold, or mutilate” IBM cards, with 80 columns and 12 rows.
They remained in active use for over 50 years, and even in their later years
were sometimes referred to as Hollerith cards. I’ll describe the legacy of these
cards more in Chapters 20, 21, and 24.

Before we move on to the twentieth century, let’s not leave the nineteenth
century with too warped a view about that era. For obvious reasons, in this
book I’ve been focusing most closely on inventions that are digital in nature.
These include the telegraph, Braille, Babbage’s engines, and the Hollerith
card. When working with digital concepts and devices, you might find it easy
to think that the whole world must be digital. But the nineteenth century is
characterized more by discoveries and inventions that were decidedly not
digital. Indeed, very little of the natural world that we experience through
our senses is digital. It’s instead mostly a continuum that can’t be so easily
quantified.

Although Hollerith used relays in his card tabulators and sorters, people
didn’t really begin building computers using relays—electromechanical com-
puters, as they were eventually called—until the mid 1930s. The relays used

From Abaci to Chips 243

in these machines were generally not telegraph relays, but instead were re-
lays developed for the telephone system to control the routing of calls.

Those early relay computers were not like the relay computer that we built
in the last chapter. (As we’ll see, I based the design of that computer on
microprocessors from the 1970s.) In particular, while it’s obvious to us to-
day that computers internally should use binary numbers, that wasn’t always
the case.

Another difference between our relay computer and the early real ones
is that nobody in the 1930s was crazy enough to construct 524,288 bits of
memory out of relays! The cost and space and power requirements would
have made so much memory impossible. The scant memory available was
used only for storing intermediate results. The programs themselves were on
a physical medium such as a paper tape with punched holes. Indeed, our
process of putting code and data into memory is a more modern concept.

Chronologically, the first relay computer seems to have been constructed
by Conrad Zuse (1910–1995), who as an engineering student in 1935 be-
gan building a machine in his parents’ apartment in Berlin. It used binary
numbers but in the early versions used a mechanical memory scheme rather
than relays. Zuse punched holes in old 35mm movie film to program his
computers.

In 1937, George Stibitz (1904–1995) of Bell Telephone Laboratories took
home a couple of telephone relays and wired a 1-bit adder on his kitchen
table that his wife later dubbed the K Machine (K for kitchen). This experi-
mentation led to Bell Labs’ Complex Number Computer in 1939.

Meanwhile, Harvard graduate student Howard Aiken (1900–1973) needed
some way to do lots of repetitive calculations, and that led to a collabora-
tion between Harvard and IBM that resulted in the Automated Sequence
Controlled Calculator (ASCC) eventually known as the Harvard Mark I,
completed in 1943. This was the first digital computer that printed tables,
thus finally realizing Charles Babbage’s dream. The Mark II was the larg-
est relay-based machine, using 13,000 relays. The Harvard Computation
Laboratory headed by Aiken taught the first classes in computer science.

Relays weren’t perfect devices for constructing computers. Because they
were mechanical and worked by bending pieces of metal, they could break
after an extended workout. A relay could also fail because of a piece of dirt
or paper stuck between the contacts. In one famous incident in 1947, a moth
was extracted from a relay in the Harvard Mark II computer. Grace Murray
Hopper (1906–1992), who had joined Aiken’s staff in 1944 and who would
later become quite famous in the field of computer programming languages,
taped the moth to the computer logbook with the note “first actual case of
bug being found.”

A possible replacement for the relay is the vacuum tube, which was
developed by John Ambrose Fleming (1849–1945) and Lee de Forest
(1873–1961) in connection with radio. By the 1940s, vacuum tubes had long
been used to amplify telephones, and virtually every home had a console
radio set filled with glowing tubes that amplified radio signals to make them
audible. Vacuum tubes can also be wired—much like relays—into AND, OR,
NAND, and NOR gates.

244 Chapter Eighteen

It doesn’t matter whether gates are built from relays or vacuum tubes.
Gates can always be assembled into adders, selectors, decoders, flip-flops, and
counters. Everything I explained about relay-based components in the pre-
ceding chapters remains valid when the relays are replaced by vacuum tubes.

Vacuum tubes had their own problems, though. They were expensive, re-
quired a lot of electricity, and generated a lot of heat. The big problem,
however, was that they eventually burned out. This was a fact of life that
people lived with. Those who owned tube radios were accustomed to replac-
ing tubes periodically. The telephone system was designed with a lot of redun-
dancy, so the loss of a tube now and then was no big deal. (No one expects
the telephone system to work flawlessly anyway.) When a tube burns out in
a computer, however, it might not be immediately detected. Moreover, a com-
puter uses so many vacuum tubes, that statistically they might be burning
out every few minutes.

The big advantage of using vacuum tubes over relays is that tubes can
switch in about a millionth of a second—one microsecond. A vacuum tube
changes state (switches on or off) a thousand times faster than a relay, which
at its very best only manages to switch in about 1 millisecond, a thousandth
of a second. Interestingly enough, the speed issue wasn’t a major consid-
eration in early computer development because overall computing speed was
linked to the speed that the machine read the program from the paper or
film tape. As long as computers were built in this way, it didn’t matter how
much faster vacuum tubes were than relays.

But beginning in the early 1940s, vacuum tubes began supplanting relays
in new computers. By 1945, the transition was complete. While relay ma-
chines were known as electromechanical computers, vacuum tubes were the
basis of the first electronic computers.

In Great Britain, the Colossus computer (first operational in 1943) was
dedicated to cracking the German “Enigma” code-making machine. Con-
tributing to this project (and to some later British computer projects) was
Alan M. Turing (1912–1954), who is most famous these days for writing two
influential papers. The first, published in 1937, pioneered the concept of
“computability,” which is an analysis of what computers can and can’t do.
He conceived of an abstract model of a computer that’s now known as the
Turing Machine. The second famous paper Turing wrote was on the subject
of artificial intelligence. He introduced a test for machine intelligence that’s
now known as the Turing Test.

At the Moore School of Electrical Engineering (University of Pennsylva-
nia), J. Presper Eckert (1919–1995) and John Mauchly (1907–1980) designed
the ENIAC (Electronic Numerical Integrator and Computer). It used 18,000
vacuum tubes and was completed in late 1945. In sheer tonnage (about 30),
the ENIAC was the largest computer that was ever (and probably will ever
be) made. By 1977, you could buy a faster computer at Radio Shack. Eckert
and Mauchly’s attempt to patent the computer was, however, thwarted by
a competing claim of John V. Atanasoff (1903–1995), who earlier designed
an electronic computer that never worked quite right.

From Abaci to Chips 245

The ENIAC attracted the interest of mathe-
matician John von Neumann (1903–1957). Since
1930, the Hungarian-born von Neumann (whose
last name is pronounced noy mahn) had been
living in the United States. A flamboyant man
who had a reputation for doing complex arith-
metic in his head, von Neumann was a mathe-
matics professor at the Princeton Institute for
Advanced Study, and he did research in every-
thing from quantum mechanics to the applica-
tion of game theory to economics.

John von Neumann helped design the suc-
cessor to the ENIAC, the EDVAC (Electronic
Discrete Variable Automatic Computer). Particularly in the 1946 paper “Pre-
liminary Discussion of the Logical Design of an Electronic Computing In-
strument,” coauthored with Arthur W. Burks and Herman H. Goldstine, he
described several features of a computer that made the EDVAC a consider-
able advance over the ENIAC. The designers of the EDVAC felt that the
computer should use binary numbers internally. The ENIAC used decimal
numbers. The computer should also have as much memory as possible, and
this memory should be used for storing both program code and data as the
program was being executed. (Again, this wasn’t the case with the ENIAC.
Programming the ENIAC was a matter of throwing switches and plugging
in cables.) These instructions should be sequential in memory and addressed
with a program counter but should also allow conditional jumps. This de-
sign came to be known as the stored-program concept.

These design decisions were such an important evolutionary step that to-
day we speak of von Neumann architecture. The computer that we built in
the last chapter was a classic von Neumann machine. But with von
Neumann architecture comes the von Neumann bottleneck. A von Neumann
machine generally spends a significant amount of time just fetching instruc-
tions from memory in preparation for executing them. You’ll recall that the
final design of the Chapter 17 computer required that three-quarters of the
time it spent on each instruction be involved in the instruction fetch.

At the time of the EDVAC, it wasn’t cost effective to build a lot of memory
out of vacuum tubes. Some very odd solutions were proposed instead. One
successful one was mercury delay line memory, which used 5-foot tubes of
mercury. At one end of the tube, little pulses were sent into the mercury about
1 microsecond apart. These pulses took about a millisecond to reach the
other end (where they were detected like sound waves and routed back to
the beginning), and hence each tube of mercury could store about 1024 bits
of information.

It wasn’t until the mid-1950s that magnetic core memory was developed.
Such memory consisted of large arrays of little magnetized metal rings strung
with wires. Each little ring could store a bit of information. Long after core
memory had been replaced by other technologies, it was common to hear
older programmers refer to the memory that the processor accessed as core.

246 Chapter Eighteen

John von Neumann wasn’t the only person doing some major conceptual
thinking about the nature of computers in the 1940s.

Claude Shannon (born 1916) was another influential thinker. In Chap-
ter 11, I discussed his 1938 master’s thesis, which established the relation-
ship between switches, relays, and Boolean algebra. In 1948, while working
for Bell Telephone Laboratories, he published a paper in the Bell System Tech-
nical Journal entitled “A Mathematical Theory of Communication” that not
only introduced the word bit in print but established a field of study today
known as information theory. Information theory is concerned with trans-
mitting digital information in the presence of noise (which usually prevents
all the information from getting through) and how to compensate for that.
In 1949, he wrote the first article about programming a computer to play
chess, and in 1952 he designed a mechanical mouse controlled by relays that
could learn its way around a maze. Shannon was also well known at Bell
Labs for riding a unicycle and juggling simultaneously.

Norbert Wiener (1894–1964), who earned his Ph.D. in mathematics from
Harvard at the age of 18, is most famous for his book Cybernetics, or Control
and Communication in the Animal and Machine (1948). He coined the word
cybernetics (derived from the Greek for steersman) to identify a theory that
related biological processes in humans and animals to the mechanics of
computers and robots. In popular culture, the ubiquitous cyber- prefix now
denotes anything related to the computer. Most notably, the interconnection
of millions of computers through the Internet is known as cyberspace, a word
coined by cyberpunk science-fiction novelist William Gibson in his 1984
novel Neuromancer.

In 1948, the Eckert-Mauchly Computer Corporation (later part of
Remington Rand) began work on what would become the first commercially
available computer—the Universal Automatic Computer, or UNIVAC. It was
completed in 1951, and the first one was delivered to the Bureau of the Cen-
sus. The UNIVAC made its prime-time network debut on CBS, when it was
used to predict results of the 1952 presidential election. Walter Cronkite
referred to it as an “electronic brain.” Also in 1952, IBM announced the
company’s first commercial computer system, the 701.

And thus began a long history of corporate and governmental comput-
ing. However interesting that history might be, we’re going to pursue an-
other historical track—a track that shrank the cost and size of computers
and brought them into the home, and which began with an almost unno-
ticed electronics breakthrough in 1947.

Bell Telephone Laboratories was for many years a place where smart people
could work on just about anything that interested them. Some of them, for-
tunately, were interested in computers. I’ve already mentioned George Stibitz
and Claude Shannon, both of whom made significant contributions to early
computing while working at Bell Labs. Later on, in the 1970s, Bell Labs was
the birthplace of the influential computer operating system named Unix and
a programming language named C, which I’ll describe in upcoming chapters.

Bell Labs came about when American Telephone and Telegraph officially
separated their scientific and technical research divisions from the rest of their
business, creating the subsidiary on January 1, 1925. The primary purpose

From Abaci to Chips 247

of Bell Labs was to develop technologies for improving the telephone sys-
tem. That mandate was fortunately vague enough to encompass all sorts of
things, but one obvious perennial goal within the telephone system was the
undistorted amplification of voice signals transmitted over wires.

Since 1912, the Bell System had worked with vacuum tube amplification,
and a considerable amount of research and engineering went into improv-
ing vacuum tubes for use by the telephone system. Despite this work, vacuum
tubes still left much to be desired. Tubes were large, consumed a lot of power,
and eventually burned out. But they were the only game in town.

All that changed December 16, 1947, when two physicists at Bell Labs
named John Bardeen (1908–1991) and Walter Brattain (1902–1987) wired
a different type of amplifier. This new amplifier was constructed from a slab
of germanium—an element known as a semiconductor—and a strip of gold
foil. They demonstrated it to their boss, William Shockley (1910–1989), a
week later. It was the first transistor, a device that some people have called the
most important invention of the twentieth century.

The transistor didn’t come out of the blue. Eight years earlier, on Decem-
ber 29, 1939, Shockley had written in his notebook, “It has today occurred
to me that an amplifier using semiconductors rather than vacuum is in prin-
ciple possible.” And after that first transistor was demonstrated, many years
followed in perfecting it. It wasn’t until 1956 that Shockley, Bardeen, and
Brattain were awarded the Nobel Prize in physics “for their researches on
semiconductors and their discovery of the transistor effect.”

Earlier in this book, I talked about conductors and insulators. Conductors
are so called because they’re very conducive to the passage of electricity.
Copper, silver, and gold are the best conductors, and it’s no coincidence that
all three are found in the same column of the periodic table of the elements.

As you’ll recall, the electrons in an atom are distributed in shells that
surround the nucleus of the atom. What characterizes these three conduc-
tors is a lone electron in the outermost shell. This electron can be easily dis-
lodged from the rest of the atom and hence is free to move as electrical
current. The opposites of conductors are insulators—like rubber and plastic—
that barely conduct electricity at all.

The elements germanium and silicon (as well as some compounds) are
called semiconductors, not because they conduct half as well as conductors,
but because their conductance can be manipulated in various ways. Semi-
conductors have four electrons in the outermost shell, which is half the
maximum number the outer shell can have. In a pure semiconductor, the
atoms form very stable bonds with each other and have a crystalline struc-
ture similar to the diamond. Such semiconductors aren’t good conductors.

But semiconductors can be doped, which means that they’re combined
with certain impurities. One type of impurity adds extra electrons to those
needed for the bond between the atoms. These are called N-type semi-
conductors (N for negative). Another type of impurity results in a P-type
semiconductor.

Semiconductors can be made into amplifiers by sandwiching a P-type
semiconductor between two N-type semiconductors. This is known as an

248 Chapter Eighteen

NPN transistor, and the three pieces are known as the collector, the base,
and the emitter.

Here’s a schematic diagram of an NPN transistor:

Base

Collector

Emitter

A small voltage on the base can control a much larger voltage passing from
the collector to the emitter. If there’s no voltage on the base, it effectively turns
off the transistor.

Transistors are usually packaged in little metal cans about a quarter-inch
in diameter with three wires poking out:

The transistor inaugurated solid-state electronics, which means that tran-
sistors don’t require vacuums and are built from solids, specifically semicon-
ductors and most commonly (these days) silicon. Besides being much smaller
than vacuum tubes, transistors require much less power, generate much less
heat, and last longer. Carrying around a tube radio in your pocket was in-
conceivable. But a transistor radio could be powered by a small battery, and
unlike tubes, it wouldn’t get hot. Carrying a transistor radio in your pocket
became possible for some lucky people opening presents on Christmas
morning in 1954. Those first pocket radios used transistors made by Texas
Instruments, an important company of the semiconductor revolution.

The first commercial application of the transistor was, however, a hear-
ing aid. In commemorating the heritage of Alexander Graham Bell in his
lifelong work with deaf people, AT&T allowed hearing aid manufacturers
to use transistor technology without paying any royalties. The first transis-
tor television debuted in 1960, and today tube appliances have almost
disappeared. (Not entirely, however. Some audiophiles and electric gui-
tarists continue to prefer the sound of tube amplifiers to their transistor
counterparts.)

In 1956, Shockley left Bell Labs to form Shockley Semiconductor Labo-
ratories. He moved to Palo Alto, California, where he had grown up. His
was the first such company to locate in that area. In time, other semicon-
ductor and computer companies set up business there, and the area south
of San Francisco is now informally known as Silicon Valley.

Vacuum tubes were originally developed for amplification, but they
could also be used for switches in logic gates. The same goes for the tran-
sistor. On the next page, you’ll see a transistor-based AND gate structured

From Abaci to Chips 249

much like the relay version. Only when both the A input is 1 and the B in-
put is 1 will both transistors conduct current and hence make the output 1.
The resistor prevents a short circuit when this happens.

Wiring two transistors as you see below in the diagram on the right cre-
ates an OR gate. In the AND gate, the emitter of the top transistor is con-
nected to the collector of the bottom transistor. In the OR gate, the collectors
of both transistors are connected to the voltage supply. The emitters are con-
nected together.

A In

Out

B In

V

AND gate

A In

Out

B In

V

V

OR gate

So everything we learned about constructing logic gates and other com-
ponents from relays is valid for transistors. Relays, tubes, and transistors
were all initially developed primarily for purposes of amplification but can
be connected in similar ways to make logic gates out of which computers
can be built. The first transistor computers were built in 1956, and within
a few years tubes had been abandoned for the design of new computers.

Here’s a question: Transistors certainly make computers more reliable,
smaller, and less power hungry. But do transistors make computers any sim-
pler to construct?

Not really. The transistor lets you fit more logic gates in a smaller space,
of course, but you still have to worry about all the interconnections of these
components. It’s just as difficult wiring transistors to make logic gates as it
is wiring relays and vacuum tubes. In some ways, it’s even more difficult
because the transistors are smaller and less easy to hold. If you wanted to build
the Chapter 17 computer and the 64-KB RAM array out of transistors, a
good part of the design work would be devoted to inventing some kind of
structure in which to hold all the components. Most of your physical labor
would be the tedious wiring of millions of interconnections among millions
of transistors.

250 Chapter Eighteen

As we’ve discovered, however, there are certain combinations of transis-
tors that show up repeatedly. Pairs of transistors are almost always wired
as gates. Gates are often wired into flip-flops or adders or selectors or
decoders. Flip-flops are combined into multibit latches or RAM arrays. As-
sembling a computer would be much easier if the transistors were prewired
in common configurations.

This idea seems to have been proposed first by British physicist Geoffrey
Dummer (born 1909) in a speech in May 1952. “I would like to take a peep
into the future,” he said.

With the advent of the transistor and the work in semiconductors
generally, it seems now possible to envisage electronic equipment
in a solid block with no connecting wires. The block may consist
of layers of insulating, conducting, rectifying and amplifying
materials, the electrical functions being connected directly by
cutting out areas of the various layers.

A working product, however, would have to wait a few years.
Without knowing about the Dummer prediction, in July 1958 it occurred

to Jack Kilby (born 1923) of Texas Instruments that multiple transistors as
well as resistors and other electrical components could be made from a single
piece of silicon. Six months later, in January 1959, basically the same idea
occurred to Robert Noyce (1927–1990). Noyce had originally worked for
Shockley Semiconductor Laboratories, but in 1957 he and seven other sci-
entists had left and started Fairchild Semiconductor Corporation.

In the history of technology, simultaneous invention is more common than
one might suspect. Although Kilby had invented the device six months before
Noyce, and Texas Instruments had applied for a patent before Fairchild,
Noyce was issued a patent first. Legal battles ensued, and only after a de-
cade were they finally settled to everyone’s satisfaction. Although they never
worked together, Kilby and Noyce are today regarded as the coinventors of
the integrated circuit, or IC, commonly called the chip.

Integrated circuits are manufactured through a complex process that
involves layering thin wafers of silicon that are precisely doped and etched
in different areas to form microscopic components. Although it’s expensive
to develop a new integrated circuit, they benefit from mass production—the
more you make, the cheaper they become.

The actual silicon chip is thin and delicate, so it must be securely packaged,
both to protect the chip and to provide some way for the components in the
chip to be connected to other chips. Integrated circuits are packaged in a
couple of different ways, but the most common is the rectangular plastic dual
inline package (or DIP), with 14, 16, or as many as 40 pins protruding from
the side:

From Abaci to Chips 251

This is a 16-pin chip. If you hold the chip so the little indentation is at the
left (as shown), the pins are numbered 1 through 16 beginning at the lower
left and circling around the right side to end with pin 16 at the upper left.
The pins on each side are exactly 1⁄10 inch apart.

Throughout the 1960s, the space program and the arms race fueled the
early integrated circuits market. On the civilian side, the first commercial
product that contained an integrated circuit was a hearing aid sold by Ze-
nith in 1964. In 1971, Texas Instruments began selling the first pocket cal-
culator, and Pulsar the first digital watch. (Obviously the IC in a digital watch
is packaged much differently from the example just shown.) Many other
products that incorporated integrated circuits in their design followed.

In 1965, Gordon E. Moore (then at Fairchild and later a cofounder of Intel
Corporation) noticed that technology was improving in such a way that the
number of transistors that could fit on a single chip had doubled every year
since 1959. He predicted that this trend would continue. The actual trend
was a little slower, so Moore’s Law (as it was eventually called) was modi-
fied to predict a doubling of transistors on a chip every 18 months. This is
still an astonishingly fast rate of progress and reveals why home computers
always seem to become outdated in just a few short years. Some people
believe that Moore’s Law will continue to be accurate until about 2015.

In the early days, people used to speak of small-scale integration, or SSI, to
refer to a chip that had fewer than 10 logic gates; medium-scale integration,
or MSI (10 to 100 gates); and large-scale integration, or LSI (100 to 5000).
Then the terms ascended to very-large-scale integration, or VLSI (5000
to 50,000); super-large-scale integration, or SLSI (50,000 to 100,000); and
ultra-large-scale integration, (more than 100,000 gates).

For the remainder of this chapter and the next, I want to pause our time
machine in the mid-1970s, an ancient age before the first Star Wars movie
was released and with VLSI just on the horizon. At that time, several dif-
ferent technologies were used to fabricate the components that make up inte-
grated circuits. Each of these technologies is sometimes called a family
of ICs. By the mid-1970s, two families were prevalent: TTL (pronounced
tee tee ell) and CMOS (see moss).

TTL stands for transistor-transistor logic. If in the mid-1970s you were
a digital design engineer (which meant that you designed larger circuits from
ICs), a 1 1⁄4-inch-thick book first published in 1973 by Texas Instruments
called The TTL Data Book for Design Engineers would be a permanent
fixture on your desk. This is a complete reference to the 7400 (seventy-four
hundred) series of TTL integrated circuits sold by Texas Instruments and
several other companies, so called because each IC in this family is identi-
fied by a number beginning with the digits 74.

Every integrated circuit in the 7400 series consists of logic gates that are
prewired in a particular configuration. Some chips provide simple prewired
gates that you can use to create larger components; other chips provide
common components such as flip-flops, adders, selectors, and decoders.

252 Chapter Eighteen

The first IC in the 7400 series is number 7400 itself, which is described
in the TTL Data Book as “Quadruple 2-Input Positive-NAND Gates.” What
this means is that this particular integrated circuit contains four 2-input
NAND gates. They’re called positive NAND gates because a voltage corre-
sponds to 1 and no voltage corresponds to 0. This is a 14-pin chip, and a
little diagram in the data book shows how the pins correspond to the inputs
and outputs:

891011121314

7654321

VCC 4B 4A 4Y 3B 3A 3Y

1B 1Y 2A 2B 2Y Gnd1A

This diagram is a top view of the chip (pins on the bottom) with the little
indentation (shown on page 250) at the left.

Pin 14 is labeled VCC and is equivalent to the V symbol that I’ve been us-
ing to indicate a voltage. (By convention, any double letter subscript on a capi-
tal V indicates a power supply. The C in this subscript refers to the collector
input of a transistor, which is internally where the voltage supply is con-
nected.) Pin 7 is labeled GND for ground. Every integrated circuit that you
use in a particular circuit must be connected to a power supply and a com-
mon ground.

For 7400 series TTL, VCC must be between 4.75 and 5.25 volts. Another
way of saying this is that the power supply voltage must be 5 volts plus or
minus 5 percent. If the power supply is below 4.75 volts, the chip might not
work. If it’s higher than 5.25, the chip could be damaged. You generally can’t
use batteries with TTL; even if you were to find a 5-volt battery, the volt-
age wouldn’t be exact enough to be adequate for these chips. TTL usually
requires a power supply that you plug into the wall.

Each of the four NAND gates in the 7400 chip has two inputs and one
output. They work independently of each other. In past chapters, we’ve been
differentiating between inputs being either 1 (which is a voltage) or 0 (which
is no voltage). In reality, an input to one of these NAND gates can range
anywhere from 0 volts (ground) to 5 volts (VCC). In TTL, anything between
0 volts and 0.8 volt is considered to be a logical 0, and anything between

From Abaci to Chips 253

2 volts and 5 volts is considered to be a logical 1. Inputs between 0.8 volt
and 2 volts should be avoided.

The output of a TTL gate is typically about 0.2 volt for a logical 0 and
3.4 volts for a logical 1. Because these voltages can vary somewhat, inputs
and outputs to integrated circuits are sometimes referred to as low and high
rather than 0 and 1. Moreover, sometimes a low voltage can mean a logical
1 and a high voltage can mean a logical 0. This configuration is referred to
as negative logic. When the 7400 chip is referred to as “Quadruple 2-Input
Positive-NAND Gates,” the word positive means positive logic is assumed.

If the output of a TTL gate is typically 0.2 volt for a logical 0 and 3.4 volts
for a logical 1, these outputs are safely within the input ranges, which are
between 0 and 0.8 volt for a logical 0 and between 2 and 5 volts for a logi-
cal 1. This is how TTL is insulated against noise. A 1 output can lose about
1.4 volts and still be high enough to qualify as a 1 input. A 0 output can gain
0.6 volt and still be low enough to qualify as a 0 input.

Probably the most important fact to know about a particular integrated
circuit is the propagation time. That’s the time it takes for a change in the
inputs to be reflected in the output.

Propagation times for chips are generally measured in nanoseconds, ab-
breviated nsec. A nanosecond is a very short period of time. One thousandth
of a second is a millisecond. One millionth of a second is a microsecond. One
billionth of a second is a nanosecond. The propagation time for the NAND
gates in the 7400 chip is guaranteed to be less than 22 nanoseconds. That’s
0.000000022 seconds, or 22 billionths of a second.

If you can’t get the feel of a nanosecond, you’re not alone. Nobody on
this planet has anything but an intellectual appreciation of the nanosecond.
Nanoseconds are much shorter than anything in human experience, so they’ll
forever remain incomprehensible. Every explanation makes the nanosecond
more elusive. For example, I can say that if you’re holding this book 1 foot
away from your face, a nanosecond is the time it takes the light to travel
from the page to your eyes. But do you really have a better feel for the nano-
second now?

Yet the nanosecond is what makes computers possible. As we saw in
Chapter 17, a computer processor does moronically simple things—it moves
a byte from memory to register, adds a byte to another byte, moves the
result back to memory. The only reason anything substantial gets completed
(not in the Chapter 17 computer but in real ones) is that these operations
occur very quickly. To quote Robert Noyce, “After you become reconciled
to the nanosecond, computer operations are conceptually fairly simple.”

Let’s continue perusing the TTL Data Book for Design Engineers. You
will see a lot of familiar little items in this book. The 7402 chip contains four
2-input NOR gates, the 7404 has six inverters, the 7408 has four 2-input

254 Chapter Eighteen

AND gates, the 7432 has four 2-input OR gates, and the 7430 has an 8-input
NAND gate:

891011121314

7654321

VCC Nc H G Nc Nc Y

B C D E F GndA

The abbreviation NC means no connection.
The 7474 chip is another that will sound very familiar. It’s a “Dual D-Type

Positive-Edge-Triggered Flip-Flop with Preset and Clear” and is diagrammed
like this:

Q

891011121314

7654321

VCC 2Clr 2D 2Clk 2Pre 2Q 2Q

1D 1Clk 1Pre 1Q 1Q Gnd1Clr

Q

D

Clk

Q
PRE

Clr

D

Clk

QPRE

Clr

The TTL Data Book even includes a logic diagram for each flip-flop in this chip:

From Abaci to Chips 255

Q

Q

Preset

Clear

D

Clock

You’ll recognize this as being similar to the diagram at the end of Chapter
14, except that I used NOR gates. The logic table in the TTL Data Book is
a little different as well:

Outputs

Q

H

q

L

L

H*

H

H*

Clk

X

D

X

X

X

H L

L H

Q0 Q0L

Inputs

Pre

L

Clr

H

H

L

H

L

L

H

H

↓

↓

H

H

L X

X

H

L

X

In this table, the H stands for High and the L stands for Low. You can think
of these as 1 and 0 if you wish. In my flip-flop, the Preset and Clear inputs
were normally 0; here they’re normally 1.

Moving right along in the TTL Data Book, you’ll discover that the 7483
chip is a 4-Bit Binary Full Adder, 74151 is a 8-Line-To-1-Line Data Selector,
the 74154 is a 4-line-To-16-Line Decoder, 74161 is a Synchronous 4-Bit
Binary Counter, and 74175 is a Quadruple D-Type Flip-Flop with Clear. You
can use two of these chips for making an 8-bit latch.

256 Chapter Eighteen

So now you know how I came up with all the various components I’ve
been using since Chapter 11. I stole them from the TTL Data Book for
Design Engineers.

As a digital design engineer, you would spend long hours going through
the TTL Data Book familiarizing yourself with the types of TTL chips that
were available. Once you knew all your tools, you could actually build the
computer I showed in Chapter 17 out of TTL chips. Wiring the chips together
is a lot easier than wiring individual transistors together. But you might want
to consider not using TTL to make the 64-KB RAM array. In the 1973
TTL Data Book, the heftiest RAM chip listed is a mere 256 × 1 bits. You’d
need 2048 of these chips to make 64 KB! TTL was never the best technol-
ogy for memory. I’ll have more to say about memory in Chapter 21.

You’d probably want to use a better oscillator as well. While you can
certainly connect the output of a TTL inverter to the input, it’s better to have
an oscillator with a more predictable frequency. Such an oscillator can be
constructed fairly easily using a quartz crystal that comes in a little flat can
with two wires sticking out. These crystals vibrate at very specific frequen-
cies, usually at least a million cycles per second. A million cycles per second
is called a megahertz and abbreviated MHz. If the Chapter 17 computer were
constructed out of TTL, it would probably run fine with a clock frequency
of 10 MHz. Each instruction would execute in 400 nanoseconds. This, of
course, is much faster than anything we conceived when we were working
with relays.

The other popular chip family was (and still is) CMOS, which stands for
complementary metal-oxide semiconductor. If you were a hobbyist design-
ing circuits from CMOS ICs in the mid-1970s, you might use as a reference
source a book published by National Semiconductor and available at your
local Radio Shack entitled CMOS Databook. This book contains informa-
tion about the 4000 (four thousand) series of CMOS ICs.

The power supply requirement for TTL is 4.75 to 5.25 volts. For CMOS,
it’s anything from 3 volts to 18 volts. That’s quite a leeway! Moreover,
CMOS requires much less power than TTL, which makes it feasible to run
small CMOS circuits from batteries. The drawback of CMOS is lack of
speed. For example, the CMOS 4008 4-bit full adder running at 5 volts is
only guaranteed to have a propagation time of 750 nanoseconds. It gets faster
as the power supply gets higher—250 nsec at 10 volts and 190 nsec at 15
volts. But the CMOS device doesn’t come close to the TTL 4-bit adder, which
has a propagation time of 24 nsec. (Twenty-five years ago, the trade-off
between the speed of TTL and the low power requirements of CMOS was
fairly clear cut. Today there are low-power versions of TTL and high-speed
versions of CMOS.)

On the practical side, you would probably begin wiring chips together on
a plastic breadboard:

From Abaci to Chips 257

Each short row of 5 holes is electrically connected underneath the plastic
base. You insert chips into the breadboard so that a chip straddles the long
central groove and the pins go into the holes on either side of the groove.
Each pin of the IC is then electrically connected to 4 other holes. You con-
nect the chips with pieces of wires pushed into the other holes.

You can wire chips together more permanently using a technique called
wire-wrapping. Each chip is inserted into a socket that has long square posts:

Each post corresponds to a pin of the chip. The sockets themselves are in-
serted into thin perforated boards. From the other side of the board, you use
a special wire-wrap gun to tightly wrap thin pieces of insulated wire around
the post. The square edges of the post break through the insulation and make
an electrical connection with the wire.

If you were actually manufacturing a particular circuit using ICs, you’d
probably use a printed circuit board. Back in the old days, this was some-
thing a hobbyist could do. Such a board has holes and is covered by a thin
layer of copper foil. Basically, you cover all the areas of copper you want
to preserve with an acid resistant and use acid to etch away the rest. You
can then solder IC sockets (or the ICs themselves) directly to the copper on
the board. But because of the very many interconnections among ICs, a single
area of copper foil is usually inadequate. Commercially manufactured printed
circuit boards have multiple layers of interconnections.

By the early 1970s, it became possible to use ICs to create an entire com-
puter processor on a single circuit board. It was really only a matter of time
before somebody put the whole processor on a single chip. Although Texas
Instruments filed a patent for a single-chip computer in 1971, the honor of
actually making one belongs to Intel, a company started in 1968 by former

258 Chapter Eighteen

Fairchild employees Robert Noyce and Gordon Moore. Intel’s first major
product was, in 1970, a memory chip that stored 1024 bits, which was the
greatest number of bits on a chip at that time.

Intel was in the process of designing chips for a programmable calcula-
tor to be manufactured by the Japanese company Busicom when they de-
cided to take a different approach. As Intel engineer Ted Hoff put it, “Instead
of making their device act like a calculator with some programming abili-
ties, I wanted to make it function as a general-purpose computer programmed
to be a calculator.” This led to the Intel 4004 (pronounced forty oh four),
the first “computer on a chip,” or microprocessor. The 4004 became avail-
able in November 1971 and contained 2300 transistors. (By Moore’s Law,
microprocessors made 18 years later should contain about 4000 times as
many transistors, or about 10 million. That’s a fairly accurate prediction.)

Having told you the number of its transistors, I’ll now describe three other
important characteristics of the 4004. These three measures are often used
as standards for comparison among microprocessors since the 4004.

First, the 4004 was a 4-bit microprocessor. This means that the data paths
in the processor were only 4 bits wide. When adding or subtracting num-
bers, it handled only 4 bits at a shot. In contrast, the computer developed
in Chapter 17 has 8-bit data paths and is thus an 8-bit processor. As we’ll
soon see, 4-bit microprocessors were surpassed very quickly by 8-bit micro-
processors. No one stopped there. In the late 1970s, 16-bit microprocessors
became available. When you think back to Chapter 17 and recall the sev-
eral instruction codes necessary to add two 16-bit numbers on an 8-bit pro-
cessor, you’ll appreciate the advantage that a 16-bit processor gives you. In
the mid-1980s, 32-bit microprocessors were introduced and have remained
the standard for home computers since then.

Second, the 4004 had a maximum clock speed of 108,000 cycles per sec-
ond, or 108 kilohertz (KHz). Clock speed is the maximum speed of an os-
cillator that you can connect to the microprocessor to make it go. Any faster
and it might not work right. By 1999, microprocessors intended for home
computers had hit the 500-megahertz point—about 5000 times faster than
the 4004.

Third, the addressable memory of the 4004 was 640 bytes. This seems
like an absurdly low amount; yet it was in line with the capacity of memory
chips available at the time. As you’ll see in the next chapter, within a couple
of years microprocessors could address 64 KB of memory, which is the ca-
pability of the Chapter 17 machine. Intel microprocessors in 1999 can ad-
dress 64 terabytes of memory, although that’s overkill considering that most
people have fewer than 256 megabytes of RAM in their home computers.

These three numbers don’t affect the capability of a computer. A 4-bit
processor can add 32-bit numbers, for example, simply by doing it in 4-bit
chunks. In one sense, all digital computers are the same. If the hardware of
one processor can do something another can’t, the other processor can do
it in software; they all end up doing the same thing. This is one of the im-
plications of Alan Turing’s 1937 paper on computability.

From Abaci to Chips 259

Where processors ultimately do differ, however, is in speed. And speed is
a big reason why we’re using computers to begin with.

The maximum clock speed is an obvious influence on the overall speed
of a processor. That clock speed determines how fast each instruction is being
executed. The processor data width affects speed as well. Although a 4-bit
processor can add 32-bit numbers, it can’t do it nearly as fast as a 32-bit
processor. What might be confusing, however, is the effect on speed of the
maximum amount of memory that a processor can address. At first, address-
able memory seems to have nothing to do with speed and instead reflects a
limitation on the processor’s ability to perform certain functions that might
require a lot of memory. But a processor can always get around the memory
limitation by using some memory addresses to control some other medium
for saving and retrieving information. (For example, suppose every byte writ-
ten to a particular memory address is actually punched on a paper tape, and
every byte read from that address is read from the tape.) What happens,
however, is that this process slows down the whole computer. The issue again
is speed.

Of course, these three numbers indicate only roughly how fast the micro-
processor operates. These numbers tell you nothing about the internal ar-
chitecture of the microprocessor or about the efficiency and capability of the
machine-code instructions. As processors have become more sophisticated,
many common tasks previously done in software have been built into the
processor. We’ll see examples of this trend in the chapters ahead.

Even though all digital computers have the same capabilities, even though
they can do nothing beyond the primitive computing machine devised by
Alan Turing, the speed of a processor of course ultimately affects the over-
all usefulness of a computer system. Any computer that’s slower than the
human brain in performing a set of calculations is useless, for example. And
we can hardly expect to watch a movie on our modern computer screens if
the processor needs a minute to draw a single frame.

But back to the mid-1970s. Despite the limitations of the 4004, it was a
start. By April 1972, Intel had released the 8008—an 8-bit microprocessor
running at 200 kHz that could address 16 KB of memory. (See how easy it
is to sum up a processor with just three numbers?) And then, in a five-month
period in 1974, both Intel and Motorola came out with microprocessors that
were intended to improve on the 8008. These two chips changed the world.

260

Chapter Nineteen

Two Classic
Microprocessors

he microprocessor—a consolidation of all the components of a
central processing unit (CPU) of a computer on a single chip of
silicon—was born in 1971. It was a modest beginning: The first

microprocessor, the Intel 4004, contained about 2300 transistors. Today,
nearly three decades later, microprocessors made for home computers are
approaching the 10,000,000 transistor mark.

Yet what the microprocessor actually does on a fundamental level has
remained unchanged. While those millions of additional transistors in today’s
chips might be doing interesting things, in an initial exploration of the mi-
croprocessor they offer more distraction than enlightenment. To obtain the
clearest view of what a microprocessor does, let’s look at the first ready-for-
prime-time microprocessors.

These microprocessors appeared in 1974, the year in which Intel intro-
duced the 8080 (pronounced eighty eighty) in April and Motorola—a com-
pany that had been making semiconductors and transistor-based products
since the 1950s—introduced the 6800 (sixty-eight hundred) in August. These
weren’t the only microprocessors available that year. Also in 1974, Texas
Instruments introduced the 4-bit TMS 1000, which was used in many cal-
culators, toys, and appliances; and National Semiconductor introduced the
PACE, which was the first 16-bit microprocessor. In retrospect, however, the
8080 and the 6800 were certainly the two most historically significant chips.

T

Two Classic Microprocessors 261

Intel set the initial price of the 8080 at $360, a sly dig at IBM’s System/360,
a large mainframe system used by many large corporations that cost millions.
(Today you can buy an 8080 chip for $1.95.) It’s not as if the 8080 is com-
parable to System/360 in any way, but within a few years IBM itself would
certainly be taking notice of these very small computers.

The 8080 is an 8-bit microprocessor that contains about 6000 transistors,
runs at a 2 MHz clock speed, and addresses 64 kilobytes of memory. The
6800 (also selling these days for $1.95) has about 4000 transistors and also
addresses 64 KB of memory. The first 6800 ran at 1 MHz, but by 1977
Motorola introduced later versions running at 1.5 and 2 MHz.

These chips are referred to as single-chip microprocessors and less accu-
rately as computers on a chip. The processor is only one part of the whole
computer. In addition to the processor, a computer at the very least requires
some random access memory (RAM), some way for a person to get infor-
mation into the computer (an input device), some way for a person to get
information out of the computer (an output device), and several other chips
that bind everything together. But I’ll describe these other components in
greater detail in Chapter 21.

For now, let’s look at the microprocessor itself. Often a description of a
microprocessor is accompanied by a block diagram that illustrates the in-
ternal components of the microprocessor and how they’re connected. But
we had enough of that in Chapter 17. Instead, we’ll get a sense of what’s
inside the processor by seeing how it interacts with the outside world. In
other words, we can think of the microprocessor as a black box whose in-
ternal operations we don’t need to study minutely in order to understand
what it does. We can instead grasp what the microprocessor does by exam-
ining the chip’s input and output signals, and in particular the chip’s instruc-
tion set.

Both the 8080 and 6800 are 40-pin integrated circuits. The most com-
mon IC package for these chips is about 2 inches long, about a half inch
wide, and 1⁄8 inch thick:

Of course, what you see is just the packaging. The actual wafer of silicon
inside is much smaller—in the case of the early 8-bit microprocessors, the
silicon is less than 1⁄4 inch square. The packaging protects the silicon chip
and also provides access to all of the chip’s input and output points through
the pins. The diagram on the following page shows the function of the 40 pins
of the 8080.

262 Chapter Nineteen

HLDA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

01

READY
WAIT
A0

A1

A2

+12V
A3

A4

A5

A6

A7

A8

A15

A12

A14

A11

+5V
SYNC

DBIN
INTE

02

INT
HOLD
RESET

–5V
D0

D1

D2

D3

D7

D6

D5

D4

GND
A10

Intel
8080

A9

A13

WR

Every electrical or electronic device that we’ve built in this book has re-
quired some kind of electrical power supply. One of the 8080’s quirks is that
it requires three power supply voltages. Pin 20 must be connected to a 5-
volt power supply, pin 11 to a −5-volt power supply, and pin 28 to a 12-volt
power supply. You connect pin 2 to ground. (In 1976, Intel released the 8085
chip, which simplified these power requirements.)

All the remaining pins are drawn as arrows. An arrow from the chip
indicates an output signal. This is a signal controlled by the microproces-
sor that other chips in the computer respond to. An arrow into the chip
indicates an input signal. This is a signal that comes from another chip in
the computer that the 8080 responds to. Some pins are both inputs and
outputs.

The processor in Chapter 17 required an oscillator to make it go. The 8080
requires two different synchronized 2-MHz clock inputs labeled ø1 and ø2

on pins 22 and 15. These signals are most conveniently supplied by another
chip made by Intel known as the 8224 Clock Signal Generator. You connect
an 18-MHz quartz crystal to this chip, and it basically does the rest.

A microprocessor always has multiple output signals that address memory.
The number of signals it has for this purpose is directly related to the amount
of memory the microprocessor can address. The 8080 has 16 signals labeled
A0 through A15, which give it the ability to address 216, or 65,536, bytes of
memory.

The 8080 is an 8-bit microprocessor that reads data from memory and
writes data to memory 8 bits at a time. The chip includes eight signals la-
beled D0 through D7. These signals are the only ones on the chip that are both

Two Classic Microprocessors 263

inputs and outputs. When the microprocessor reads a byte of memory, the
pins function as inputs; when the microprocessor writes a byte to memory,
the pins function as outputs.

The other ten pins of the microprocessor are control signals. The RESET
input, for example, is used to reset the microprocessor. The output signal
R indicates that the microprocessor needs to write a byte of memory into
RAM. (The R signal corresponds to the Write input of the RAM array.)
In addition, other control signals appear on the D0 through D7 pins at a par-
ticular time while the chip reads instructions. Computer systems built around
the 8080 generally use the 8228 System Controller chip to latch these ad-
ditional control signals. I’ll describe some control signals later on, but the
8080’s control signals are notoriously messy, so unless you’re going to ac-
tually design a computer based on the chip, it’s best not to torture yourself
with its control signals.

Let’s assume that the 8080 microprocessor is connected to 64 KB of
memory that we have the ability to write bytes into and read bytes from
independent of the microprocessor.

After the 8080 chip is reset, it reads the byte located at memory address
0000h into the microprocessor. It does this by outputting 16 zeros on the
address signals A0 through A15. The byte it reads should be an 8080 instruction,
and the process of reading this byte is known as an instruction fetch.

In the computer we built in Chapter 17, all instructions (except HLT) were
3 bytes in length, consisting of an opcode and a 2-byte address. In the 8080,
instructions can be 1 byte, 2 bytes, or 3 bytes in length. Some instructions
cause the 8080 to read a byte from a particular location in memory into the
microprocessor. Some instructions cause the 8080 to write a byte from the
microprocessor into a particular location in memory. Other instructions
cause the 8080 to do something internally without using any RAM. After
processing the first instruction, the 8080 accesses the second instruction in
memory, and so forth. Together, these instructions constitute a computer
program that can do something interesting.

When the 8080 is running at its maximum speed of 2 MHz, each clock
cycle is 500 nanoseconds. (1 ÷ 2,000,000 cycles per second = 0.000000500
seconds.) The instructions in the Chapter 17 computer all required 4 clock
cycles. Each 8080 instruction requires anywhere from 4 to 18 clock cycles. This
means that each instruction is executed in 2 to 9 microseconds (millionths of
a second).

Probably the best way to understand what a particular microprocessor
is capable of doing is to examine its complete instruction set in a systematic
manner.

The final computer in Chapter 17 had only 12 instructions. An 8-bit
microprocessor could easily have as many as 256 instructions, each opcode
corresponding to a particular 8-bit value. (It could actually have more if some
instructions have 2-byte opcodes.) The 8080 doesn’t go quite that far, but
it does have 244 opcodes. That might seem like a lot, but all in all, the 8080
doesn’t really do all that much more than the computer in Chapter 17. For
example, if you need to do multiplication or division using an 8080, you still
need to write your own little program to do it.

264 Chapter Nineteen

As you’ll recall from Chapter 17, each opcode in a processor’s instruc-
tion set is usually associated with a particular mnemonic, and some of these
mnemonics might have arguments. But these mnemonics are solely for con-
venience in referring to the opcodes. The processor reads only bytes; it knows
nothing about the text that makes up the mnemonics. (For purposes of clar-
ity, I’ve taken some liberty with the mnemonics as they appear in Intel’s docu-
mentation of the 8080.)

The Chapter 17 computer had two important instructions that we initially
called Load and Store. Each of these instructions occupied 3 bytes of
memory. The first byte of a Load instruction was the opcode, and the 2 bytes
that followed the opcode indicated a 16-bit address. The processor loaded
the byte at that address into the accumulator. Similarly, the Store instruc-
tion saved the contents of the accumulator in the address indicated in the
instruction.

Later on, we discovered that we could abbreviate these two opcodes us-
ing mnemonics:

LOD A,[aaaa]
STO [aaaa],A

where A stands for the accumulator (the destination in the Load instruction
and the source in the Store instruction) and aaaa indicates a 16-bit memory
address, usually written as 4 hexadecimal digits.

The 8-bit accumulator in the 8080 is called A, just like the accumulator
in Chapter 17. And like the computer in Chapter 17, the 8080 includes two
instructions that do exactly the same thing as the Load and Store instruc-
tions. The 8080 opcodes for these two instructions are 32h and 3Ah, and
each opcode is followed by a 16-bit address. The 8080 mnemonics are STA
(standing for Store Accumulator) and LDA (Load Accumulator):

Opcode Instruction
32 STA [aaaa],A
3A LDA A,[aaaa]

In addition to the accumulator, the 8080 contains six registers that can
also hold 8-bit values inside the microprocessor. These registers are very
similar to the accumulator; indeed, the accumulator is considered to be a
special type of register. Like the accumulator, the other six registers are
latches; the processor can move bytes from memory into registers, and from
registers back into memory. The other registers, however, aren’t as versatile
as the accumulator. When you add two 8-bit numbers, for example, the result
always goes into the accumulator rather than into one of the other registers.

The six additional registers in the 8080 are named B, C, D, E, H, and L.
The first question people usually ask is, “What happened to F and G?” and
the second question is, “And what about I, J, and K?” The answer is that
registers H and L are so called because they’re special in a certain way. H
stands for high and L stands for low. Very often the 8-bit quantities in H
and L are treated in tandem as a 16-bit register pair named HL, H being the

Two Classic Microprocessors 265

high-order byte and L being the low-order byte. This 16-bit value is often
used to address memory. We’ll see how this works shortly.

Are all these registers necessary? Why didn’t we need them in the Chap-
ter 17 computer? In theory, they aren’t necessary. But they turn out to be very
convenient. Many computer programs juggle several numbers at the same
time. It’s easiest to do this if all the numbers are stored in microprocessor
registers rather than memory. The program is usually faster as well: The fewer
times a program needs to access memory, generally the faster it will run.

No fewer than 63 opcodes are devoted to a single 8080 instruction called
MOV, which is short for Move. This instruction is just a single byte. The
instruction usually moves the contents of one register into another (or the
same) register. The large number of MOV instructions is a normal conse-
quence of designing a microprocessor with seven registers (including the
accumulator).

Here are the first 32 MOV instructions. Remember that the destination
is the argument on the left and the source is the argument on the right:

Opcode Instruction Opcode Instruction
40 MOV B,B 50 MOV D,B
41 MOV B,C 51 MOV D,C
42 MOV B,D 52 MOV D,D
43 MOV B,E 53 MOV D,E
44 MOV B,H 54 MOV D,H
45 MOV B,L 55 MOV D,L
46 MOV B,[HL] 56 MOV D,[HL]
47 MOV B,A 57 MOV D,A
48 MOV C,B 58 MOV E,B
49 MOV C,C 59 MOV E,C
4A MOV C,D 5A MOV E,D
4B MOV C,E 5B MOV E,E
4C MOV C,H 5C MOV E,H
4D MOV C,L 5D MOV E,L
4E MOV C,[HL] 5E MOV E,[HL]
4F MOV C,A 5F MOV E,A

These are handy instructions to have. Whenever you have a value in one
register, you know you can move it to another register. Notice also the four
instructions that use the HL register pair, such as

MOV B,[HL]

The LDA instruction shown earlier transfers a byte from memory into the
accumulator; the 16-bit address of the byte directly follows the LDA opcode.
This MOV instruction transfers a byte from memory into register B. But the
address of the byte to be loaded into the register is stored in the register pair
HL registers. How did HL come to hold a 16-bit memory address? Well, it
could happen in a variety of ways. Maybe the address was calculated in
some way.

266 Chapter Nineteen

To summarize, these two instructions

LDA A,[aaaa]
MOV B,[HL]

both load a byte from memory into the microprocessor, but they use two
different methods to address memory. The first method is called direct ad-
dressing and the second method is called indexed addressing.

The second batch of 32 MOV instructions shows that the memory loca-
tion addressed by HL can also be a destination:

Opcode Instruction Opcode Instruction
40 MOV B,B 50 MOV D,B
60 MOV H,B 70 MOV [HL],B
61 MOV H,C 71 MOV [HL],C
62 MOV H,D 72 MOV [HL],D
63 MOV H,E 73 MOV [HL],E
64 MOV H,H 74 MOV [HL],H
65 MOV H,L 75 MOV [HL],L
66 MOV H,[HL] 76 HLT
67 MOV H,A 77 MOV [HL],A
68 MOV L,B 78 MOV A,B
69 MOV L,C 79 MOV A,C
6A MOV L,D 7A MOV A,D
6B MOV L,E 7B MOV A,E
6C MOV L,H 7C MOV A,H
6D MOV L,L 7D MOV A,L
6E MOV L,[HL] 7E MOV A,[HL]
6F MOV L,A 7F MOV A,A

Several of these instructions, such as

MOV A,A

don’t do anything useful. But the instruction

MOV [HL],[HL]

doesn’t exist. The opcode that would otherwise correspond to that instruc-
tion is actually a HLT (Halt) instruction.

A more revealing way to look at all these MOV opcodes is to examine
the bit pattern of the opcode. The MOV opcode consists of the 8 bits

01dddsss

in which the letters ddd represent a 3-bit code that refers to a destination,
and sss is a 3-bit code that refers to a source. These 3-bit codes are

Two Classic Microprocessors 267

000 = Register B
001 = Register C
010 = Register D
011 = Register E
100 = Register H
101 = Register L
110 = Contents of memory at address HL
111 = Accumulator

For example, the instruction

MOV L,E

is associated with the opcode

01101011

or 6Bh. You can check the preceding table to verify that.
So probably somewhere inside the 8080, the 3 bits labeled sss are used in

a 8-Line-to-1-Line Data Selector, and the 3 bits labeled ddd are used to con-
trol a 3-Line-to-8-Line Decoder that determines which register latches a value.

It’s also possible to use registers B and C as a 16-bit register pair BC, and
registers D and E as a 16-bit register pair DE. If either register pair contains
the address of a memory location that you want to use to load or store a byte,
you can use the following instructions:

Opcode Instruction Opcode Instruction
02 STAX [BC],A 0A LDAX A,[BC]
12 STAX [DE],A 1A LDAX A,[DE]

Another type of Move instruction is called Move Immediate and is as-
signed the mnemonic MVI. The Move Immediate instruction is composed
of 2 bytes. The first is the opcode, and the second is a byte of data. That
byte is transferred from memory into one of the registers or to the memory
location addressed by the HL register pair:

Opcode Instruction
06 MVI B,xx
0E MVI C,xx
16 MVI D,xx
1E MVI E,xx
26 MVI H,xx
2E MVI L,xx
36 MVI [HL],xx
3E MVI A,xx

For example, after the instruction

MVI E,37h

268 Chapter Nineteen

the register E contains the byte 37h. This is considered to be a third method
of addressing memory, called immediate addressing.

A collection of 32 opcodes do the four basic arithmetical operations we’re
familiar with from the processor we developed in Chapter 17. These are
addition (ADD), addition with carry (ADC), subtraction (SUB), and sub-
traction with borrow (SBB). In all cases, the accumulator is one of the two
operands and is also the destination for the result:

Opcode Instruction Opcode Instruction
80 ADD A,B 90 SUB A,B
81 ADD A,C 91 SUB A,C
82 ADD A,D 92 SUB A,D
83 ADD A,E 93 SUB A,E
84 ADD A,H 94 SUB A,H
85 ADD A,L 95 SUB A,L
86 ADD A,[HL] 96 SUB A,[HL]
87 ADD A,A 97 SUB A,A
88 ADC A,B 98 SBB A,B
89 ADC A,C 99 SBB A,C
8A ADC A,D 9A SBB A,D
8B ADC A,E 9B SBB A,E
8C ADC A,H 9C SBB A,H
8D ADC A,L 9D SBB A,L
8E ADC A,[HL] 9E SBB A,[HL]
8F ADC A,A 9F SBB A,A

Suppose A contains the byte 35h and register B contains the byte 22h.
After executing

SUB A,B

the accumulator contains the byte 13h.
If A contains the byte 35h, and register H contains the byte 10h, and L

contains the byte 7Ch, and the memory location 107Ch contains the byte
4Ah, the instruction

ADD A,[HL]

adds the byte in the accumulator (35h) and the byte addressed by the regis-
ter pair HL (4Ah) and stores the result (7Fh) in the accumulator.

The ADC and SBB instructions allow the 8080 to add and subtract 16-
bit, 24-bit, 32-bit, and larger numbers. For example, suppose the register
pairs BC and DE both contain 16-bit numbers. You want to add them and
put the result in BC. Here’s how to do it:

Two Classic Microprocessors 269

MOV A,C ; Low-order byte
ADD A,E
MOV C,A
MOV A,B ; High-order byte
ADC A,D
MOV B,A

The two addition instructions are ADD for the low-order byte and ADC for
the high-order byte. Any carry bit that results from the first addition is included
in the second addition. But because you can add only with the accumula-
tor, this little snippet of code requires no fewer than 4 MOV instructions.
Lots of MOV instructions usually show up in 8080 code.

This is a good time to talk about the 8080 flags. In our processor in
Chapter 17, we had a Carry flag and a Zero flag. The 8080 has three more,
called Sign, Parity, and Auxiliary Carry. All the flags are stored in yet an-
other 8-bit register called the Program Status Word (PSW). Instructions such
as LDA, STA, or MOV don’t affect the flags at all. The ADD, SUB, ADC,
and SBB instructions do affect the flags, however, in the following way:

• The Sign flag is set to 1 if the most significant bit of the result is
1, meaning that the result is negative.

• The Zero flag is set to 1 if the result is 0.
• The Parity flag is set to 1 if the result has even parity, which

means that the number of 1 bits in the result is even. The parity
flag is 0 if the result has odd parity. Parity is sometimes used as a
crude form of error checking. This flag isn’t often used in 8080
programming.

• The Carry flag is set to 1 if an ADD or ADC operation results in
a carry or if a SUB and SBB does not result in a carry. (This is
different from the implementation of the Carry flag in the Chap-
ter 17 computer.)

• The Auxiliary Carry flag is 1 if the operation results in a carry
from the low nibble into the high nibble. This flag is used only
for the DAA (Decimal Adjust Accumulator) instruction.

Two instructions affect the carry flag directly:

Opcode Instruction Meaning
37 STC Set Carry flag to 1
3F CMC Complement Carry flag

The computer in Chapter 17 performed ADD, ADC, SUB, and SBB in-
structions (although not with nearly as much flexibility), but the 8080 does
Boolean AND, OR, and XOR operations as well. Both arithmetic and logical
operations are performed by the processor’s Arithmetic Logic Unit (ALU).

270 Chapter Nineteen

Opcode Instruction Opcode Instruction
A0 AND A,B B0 OR A,B
A1 AND A,C B1 OR A,C
A2 AND A,D B2 OR A,D
A3 AND A,E B3 OR A,E
A4 AND A,H B4 OR A,H
A5 AND A,L B5 OR A,L
A6 AND A,[HL] B6 OR A,[HL]
A7 AND A,A B7 OR A,A
A8 XOR A,B B8 CMP A,B
A9 XOR A,C B9 CMP A,C
AA XOR A,D BA CMP A,D
AB XOR A,E BB CMP A,E
AC XOR A,H BC CMP A,H
AD XOR A,L BD CMP A,L
AE XOR A,[HL] BE CMP A,[HL]
AF XOR A,A BF CMP A,A

The AND, XOR, and OR instructions perform bitwise operations. This
means that the logical operation is performed on each pair of bits separately.
For example,

MVI A,0Fh
MVI B,55h
AND A,B

The value in the accumulator will be 05h. If the third instruction were an
OR, the result would be 5Fh. If the instruction were an XOR, the result
would be 5Ah.

The CMP (Compare) instruction is just like the SUB instruction except
that the result isn’t stored in the accumulator. In other words, the CMP
performs a subtraction and then throws away the result. What’s the point?
The flags! The flags tell you the relationship between the 2 bytes that you
compared. For example, consider the following instructions:

MVI B,25h
CMP A,B

After this instruction, the contents of A remain unchanged. However, the
Zero flag is set if the value in A equals 25h. The Carry flag is set if the value
in A is less than 25h.

The eight arithmetic and logic operations also have versions that oper-
ate on an immediate byte:

Two Classic Microprocessors 271

Opcode Instruction Opcode Instruction
C6 ADI A,xx E6 ANI A,xx
CE ACI A,xx EE XRI A,xx
D6 SUI A,xx F6 ORI A,xx
DE SBI A,xx FE CPI A,xx

For example, the two lines shown above can be replaced with

CPI A,25h

Here are two miscellaneous 8080 instructions:

Opcode Instruction
27 DAA
2F CMA

CMA stands for Complement Accumulator. It performs a ones’ comple-
ment of the value in the accumulator. Every 0 becomes a 1 and every 1 be-
comes a 0. If the accumulator is 01100101, the CMA instruction causes it to
be 10011010. You can also complement the accumulator using the instruction

XRI A,FFh

DAA stands for Decimal Adjust Accumulator, as I mentioned earlier, and
it’s probably the most sophisticated single instruction in the 8080. A whole
little section of the microprocessor is dedicated specifically to performing
this instruction.

The DAA instruction helps a programmer implement decimal arithmetic
using a method of representing numbers known as binary-coded decimal,
or BCD. In BCD, each nibble of data may range only from 0000 through
1001, corresponding to decimal digits 0 through 9. The 8 bits of a byte can
store two decimal digits in BCD format.

Suppose the accumulator contains the BCD value 27h. Because this is a
BCD value, it actually refers to the decimal value 27. (Normally, the hexa-
decimal value 27h has the decimal equivalent 39.) Suppose also that regis-
ter B contains the BCD value 94h. If you execute the instruction

MVI A,27h
MVI B,94h
ADD A,B

the accumulator will contain the value BBh, which, of course, isn’t a BCD
value because the nibbles of BCD bytes never exceed 9. But now execute the
instruction

DAA

Now the accumulator contains 21h, and the Carry flag is set. That’s because
the decimal sum of 27 and 94 equals 121. This can be handy if you need to
do BCD arithmetic.

Very often it’s necessary to add 1 to a particular value or subtract 1 from
a value. In the multiplication program in Chapter 17, we needed to subtract

272 Chapter Nineteen

1 from a value, and the way we did it was to add FFh, which is the two’s
complement value of −1. The 8080 includes special instructions for increasing
a register or memory location by 1 (this is known as an increment) or de-
creasing by 1 (decrement):

Opcode Instruction Opcode Instruction
04 INR B 05 DCR B
0C INR C 0D DCR C
14 INR D 15 DCR D
1C INR E 1D DCR E
24 INR H 25 DCR H
2C INR L 2D DCR L
34 INR [HL] 35 DCR [HL]
3C INR A 3D DCR A

The single-byte INR and DCR instructions affect all flags except the Carry flag.
The 8080 also includes four Rotate instructions. These instructions shift

the contents of the accumulator 1 bit to the left or right:

Opcode Instruction Meaning
07 RLC Rotate accumulator left
0F RRC Rotate accumulator right
17 RAL Rotate accumulator left through carry
1F RAR Rotate accumulator right through carry

Only the Carry flag is affected by these instructions.
Suppose the accumulator contains the value A7h, or 10100111 in binary.

The RLC instruction shifts the bits left. The lowest bit (shifted out of the
bottom) becomes the highest bit (shifted into the top) and also determines
the state of the Carry flag. The result is 01001111, and the Carry flag is 1.
The RRC instruction shifts the bits right in the same way. Beginning with
10100111, the result after an RRC instruction is 11010011, and the Carry
flag is 1.

The RAL and RAR instructions work a little differently. The RAL instruc-
tion sets the Carry flag to the lowest bit of the accumulator when shifting
left but sets the highest bit to the previous contents of the Carry flag. For
example, if the accumulator contains 10100111 and the Carry flag is 0, RAL
causes the accumulator to become 01001110 and the Carry flag to be 1.
Similarly, under the same initial conditions RAR causes the accumulator to
become 01010011 and the Carry flag to be set to 1.

The shift instructions come in handy when you’re multiplying a number
by 2 (that’s a shift left) or dividing a number by 2 (a shift right).

The memory that the microprocessor addresses is called random access
memory (RAM) for a reason: The microprocessor can access any particular
memory location simply by supplying an address of that location. RAM is like
a book that we can open to any page. It’s not like a week’s worth of a news-
paper on microfilm. Finding something in Saturday’s edition requires us to
scan through most of the week. Similarly, playing the last song on a cassette

Two Classic Microprocessors 273

tape requires us to fast forward through the whole side of the album. The term
for microfilm or tape storage isn’t random access but sequential access.

Random access memory is definitely a good thing, particularly for micro-
processors, but sometimes it’s advantageous to treat memory a little differ-
ently. Here’s a form of storage that’s neither random nor sequential: Suppose
you work in an office where people come to your desk to give you jobs to
do. Each job involves a file folder of some sort. Often when you’re work-
ing on one job, you find that before you can continue you must do a related
job using another file folder. So you leave the first folder on your desk and
put the second one on top of it to work on that. Now someone comes to your
desk to give you yet another job that has higher priority than the earlier one.
You’re handed a new file folder and you work with that one on top of the
other two. That job requires yet another file folder, and soon you have a pile
of four file folders on your desk.

Notice that this pile is actually a very orderly way to store and keep track
of all the jobs you’re doing. The topmost file folder always has the highest-
priority job. After you get rid of that one, the next one on the pile must be
attended to, and so on. When you finally get rid of the last file folder on your
desk (the first one you started with), you can go home.

The technical term for this form of storage is a stack. You’re stacking
things from the bottom up and removing them from the top down. It’s also
called last-in-first-out storage, or LIFO. The last thing put on the stack is
the first thing taken off the stack. The first thing put on the stack is the last
thing taken off the stack.

Computers also can use a stack, not for storing jobs but for storing num-
bers, and it’s something that turns out to be quite convenient. Putting some-
thing on the stack is called a push, and taking something off the stack is called
a pop.

Suppose you were writing an assembly-language program that used reg-
isters A, B, and C. But you notice that you’ve reached a point where the
program needs to do something else—another little calculation that also
needs to use registers A, B, and C. You eventually want to come back to what
you were doing before, however, and continue using A, B, and C with the
values they previously had.

What you could do, of course, is simply store registers A, B, and C in
various locations in memory and later load these locations back into the
registers. But that requires keeping track of where you stored them. A much
cleaner way to do it is to push the registers on the stack:

PUSH A
PUSH B
PUSH C

I’ll explain what these instructions actually do in a moment. For now, all we
need to know is that they somehow save the contents of the registers in last-
in-first-out memory. Once these statements are executed, your program can
use these registers for other purposes without worry. To get the earlier val-
ues back, you simply pop them from the stack in the reverse order, as shown
at the top of the following page.

274 Chapter Nineteen

POP C
POP B
POP A

Remember: Last in, first out. Accidentally switching around these POP state-
ments would constitute a bug.

What’s particularly nice about the stack mechanism is that lots of differ-
ent sections of a program can use the stack without causing problems. For
example, after the program pushes A, B, and C on the stack, another sec-
tion of the program could decide it needs to do the same thing with regis-
ters C, D, and E:

PUSH C
PUSH D
PUSH E

Then all that’s necessary is for that section of the program to restore the
registers this way:

POP E
POP D
POP C

before the first section popped C, B, and A.
How is the stack implemented? The stack is, first of all, just a section of

normal RAM that isn’t being used for anything else. The 8080 micropro-
cessor contains a special 16-bit register that addresses this section of memory.
That 16-bit register is called the Stack Pointer.

My examples of pushing and popping individual registers weren’t quite
accurate for the 8080. The 8080 PUSH instruction actually stores 16-bit
values on the stack, and the POP instruction retrieves them. So instead of
instructions like PUSH C and POP C, we have the following 8 instructions:

Opcode Instruction Opcode Instruction
C5 PUSH BC C1 POP BC
D5 PUSH DE D1 POP DE
E5 PUSH HL E1 POP HL
F5 PUSH PSW F1 POP PSW

The PUSH BC instruction stores registers B and C on the stack, and POP
BC retrieves them. The abbreviation PSW in the last row refers to the Pro-
gram Status Word, which, as you’ll recall, is the 8-bit register that contains
the flags. The two instructions in the bottom row actually push and pop both
the accumulator and the PSW. If you want to save the contents of all the
registers and flags, you can use

PUSH PSW
PUSH BC
PUSH DE
PUSH HL

Two Classic Microprocessors 275

When you later need to restore the contents of these registers, use the POP
instructions in reverse order:

POP HL
POP DE
POP BC
POP PSW

How does the stack work? Let’s assume the Stack Pointer is 8000h. The
PUSH BC instruction causes the following to occur:

• The Stack Pointer is decremented to 7FFFh.
• The contents of register B are stored at the Stack Pointer address,

or 7FFFh.
• The Stack Pointer is decremented to 7FFEh.
• The contents of register C are stored at the Stack Pointer address,

or 7FFEh.

A POP BC instruction executed when the Stack Pointer is still 7FFEh un-
does everything:

• The contents of register C are loaded from the Stack Pointer ad-
dress, or 7FFEh.

• The Stack Pointer is incremented to 7FFFh.
• The contents of register B are loaded from the Stack Pointer ad-

dress, or 7FFFh.
• The Stack Pointer is incremented to 8000h.

For every PUSH instruction, the stack increases 2 bytes in size. It’s pos-
sible—possibly due to a bug in a program—that the stack will get so big that
it will begin to overwrite some code or data needed by a program. This is a
problem known as stack overflow. Similarly, too many POP instructions can
prematurely exhaust the contents of the stack, a condition known as stack
underflow.

If you have 64 KB of memory connected to your 8080, you might want
to initially set the Stack Pointer to 0000h. The first PUSH instruction dec-
rements that address to FFFFh. The stack then occupies the area of memory
with the very highest addresses, quite a distance from your programs, which
will probably be in the area of memory starting at address 0000h.

The instruction to set the value of the stack register is LXI, which stands
for Load Extended Immediate. These instructions also load 16-bit register
pairs with the two bytes that follow the opcode:

Opcode Instruction
01 LXI BC,xxxx
11 LXI DE,xxxx
21 LXI HL,xxxx
31 LXI SP,xxxx

276 Chapter Nineteen

The instruction

LXI BC,527Ah

is equivalent to

MVI B,52
MVI C,7Ah

The LXI instruction saves a byte. In addition, the last LXI instruction in the
preceding table is used to set the Stack Pointer to a particular value. It’s not
uncommon for this instruction to be one of the first instructions that a
microprocessor executes after being restarted:

0000h: LXI SP,0000h

It’s also possible to increment and decrement register pairs and the Stack
Pointer as if they were 16-bit registers:

Opcode Instruction Opcode Instruction
03 INX BC 0B DCX BC
13 INX DE 1B DCX DE
23 INX HL 2B DCX HL
33 INX SP 3B DCX SP

While I’m on the subject of 16-bit instructions, let’s look at a few more.
The following instructions add the contents of 16-bit register pairs to the
register pair HL:

Opcode Instruction
09 DAD HL,BC
19 DAD HL,DE
29 DAD HL,HL
39 DAD HL,SP

These instructions could save a few bytes. For example, the first of these
instructions would normally require 6 bytes:

MOV A,L
ADD A,C
MOV L,A
MOV A,H
ADC A,B
MOV H,A

The DAD instruction is normally used for calculating memory addresses.
The only flag that the instruction affects is the Carry flag.

Next let’s look at some miscellaneous instructions. These two opcodes are
followed by a 2-byte address and store and load the contents of the register
pair HL at that address:

Opcode Instruction Meaning
2h SHLD [aaaa],HL Store HL Direct

2Ah LHLD HL,[aaaa] Load HL Direct

Two Classic Microprocessors 277

The L register is stored at address aaaa, and the H register is stored at ad-
dress aaaa + 1.

These two instructions load the Program Counter or the Stack Pointer
from the register pair HL:

Opcode Instruction Meaning
E9h PCHL PC,HL Load Program Counter from HL
F9h SPHL SP,HL Load Stack Pointer from HL

The PCHL instruction is actually a type of Jump. The next instruction that
the 8080 executes is the one located at the address stored in the HL regis-
ter pair. SPHL is another method to set the Stack Pointer.

These two instructions exchange the contents of HL first with the two
bytes located on top of the stack and second with the register pair DE:

Opcode Instruction Meaning
E3h XTHL HL,[SP] Exchange top of stack with HL
EBh XCHG HL,DE Exchange DE and HL

I haven’t described the 8080 Jump instructions yet, except for PCHL. As
you’ll recall from Chapter 17, a processor includes a register called the
Program Counter that contains the memory address the processor uses to
retrieve the instructions that it executes. Normally the Program Counter
causes the processor to execute instructions that are located sequentially in
memory. But some instructions—usually named Jump or Branch or Goto—
cause the processor to deviate from this steady course. Such instructions cause
the Program Counter to be loaded with another value. The next instruction
that the processor fetches is somewhere else in memory.

While a plain old ordinary Jump instruction is certainly useful, conditional
jumps are even better. These instructions cause the processor to jump to
another address based on the setting of a particular flag, such as the Carry
flag or the Zero flag. The presence of a conditional Jump instruction is what
turned the Chapter 17 automated adding machine into a general-purpose
digital computer.

The 8080 has five flags, four of which are used for conditional jumps. The
8080 supports nine different Jump instructions, including the unconditional
Jump and conditional jumps based on whether the Zero, Carry, Parity, and
Sign flags are 1 or 0.

Before I show these instructions to you, however, I want to introduce two
other types of instructions that are related to the Jump. The first is the Call
instruction. A Call is similar to a Jump except that prior to loading the Pro-
gram Counter with a new address, the processor saves the previous address.
Where does it save that address? Why, on the stack, of course!

This strategy means that the Call instruction effectively saves a reminder
of where it jumped from. The saved address allows the processor to even-
tually return to the original location. The returning instruction is called,
appropriately, Return. The Return instruction pops 2 bytes from the stack
and loads the Program Counter with that value.

278 Chapter Nineteen

The Call and Return instructions are extremely important features of any
processor. They allow a programmer to implement subroutines, which are
snippets of frequently used code. (By frequently I generally mean more than
once.) Subroutines are the primary organizational elements of assembly-
language programs.

Let’s look at an example. Suppose you’re writing an assembly-language
program and you come to a point where you need to multiply 2 bytes. So
you write some code that does precisely that, and you continue with the
program. Now you come to another point where you need to multiply 2 bytes.
Well, you already know how to multiply two numbers, so you can simply
use the same instructions all over again. But do you simply enter the instruc-
tions into memory a second time? I hope not. It’s a waste of time and memory.
What you’d rather do is just jump to the previous code. But the normal Jump
doesn’t work either because there’s no way to return to the current place in
the program. That’s what the Call and Return instructions let you do.

A group of instructions that multiply 2 bytes is an ideal candidate for a
subroutine. Let’s take a look at such a subroutine. In Chapter 17, the bytes
to be multiplied (and the result) were stored in particular locations in
memory. This 8080 subroutine instead multiplies the byte in register B by
the byte in register C and puts the 16-bit product in register HL:

Multiply: PUSH PSW ; Save registers being altered
 PUSH BC

 SUB H,H ; Set HL (result) to 0000h
 SUB L,L

 MOV A,B ; The multiplier goes in A
 CPI A,00h ; If it’s 0, we’re finished.
 JZ AllDone

 MVI B,00h ; Set high byte of BC to 0

MultLoop: DAD HL,BC ; Add BC to HL
 DEC A ; Decrement multiplier
 JNZ MultLoop ; Loop if it’s not 0

AllDone: POP BC ; Restore saved registers
 POP PSW
 RET ; Return

Notice that the first line of the subroutine begins with a label, which is
the word Multiply. This label, of course, actually corresponds to a memory
address where the subroutine is located. The subroutine begins with two
PUSH instructions. Usually a subroutine should attempt to save (and later
restore) any registers that it might need to use.

The subroutine then sets the contents of the H and L registers to 0. It could
have used the MVI (Move Immediate) instructions rather than SUB instruc-
tions for this job, but that would have required 4 instruction bytes rather
than 2. The register pair HL will hold the result of the multiplication when
the subroutine is completed.

Two Classic Microprocessors 279

Next the subroutine moves the contents of register B (the multiplier) into
A and checks if it’s 0. If it’s 0, the multiplication subroutine is complete
because the product is 0. Since registers H and L are already 0, the subrou-
tine can just use the JZ (Jump If Zero) instruction to skip to the two POP
instructions at the end.

Otherwise, the subroutine sets register B to 0. Now the register pair BC
contains a 16-bit multiplicand and A contains the multiplier. The DAD
instruction adds BC (the multiplicand) to HL (the result). The multiplier in
A is decremented and, as long as it’s not 0, the JNZ (Jump If Not Zero) in-
struction causes BC to be added to HL again. This little loop will continue
until BC is added to HL a number of times equal to the multiplier. (It’s pos-
sible to write a more efficient multiplication subroutine using the 8080 shift
instructions.)

A program that wishes to make use of this subroutine to multiply (for
example) 25h by 12h uses the following code:

MVI B,25h
MVI C,12h
CALL Multiply

The CALL instruction saves the value of the Program Counter on the stack.
The value saved on the stack is the address of the next instruction after the
CALL instruction. Then the CALL instruction causes a jump to the instruc-
tion identified by the label Multiply. That’s the beginning of the subroutine.
When the subroutine has calculated the product, it executes a RET (Return)
instruction, which causes the Program Counter to be popped from the stack.
The program continues with the next statement after the CALL instruction.

The 8080 instruction set includes conditional Call instructions and con-
ditional Return instructions, but these are used much less than the condi-
tional Jump instructions. The complete array of these instructions is shown
in the following table:

Opcode

None

Z not set C0

Z set C8

C not set D0

C set D8

Odd parity E0

Even parity E8

S not set F0

S set F8

Condition Instruction

RNZ

RZ

RNC

RC

RPO

RPE

RP

RM

C2

CA

D2

DA

E2

EA

F2

FA

Instruction

JNZ aaaa

JZ aaaa

JNC aaaa

JC aaaa

JPO aaaa

JPE aaaa

JP aaaa

JM aaaa

C4

CC

D4

DC

E4

EC

F4

FC

Instruction

CNZ aaaa

CZ aaaa

CNC aaaa

CC aaaa

CPO aaaa

CPE aaaa

CP aaaa

CM aaaa

Opcode Opcode

C9 RET C3 JMP aaaa CD CALL aaaa

280 Chapter Nineteen

As you probably know, memory isn’t the only thing connected to a mi-
croprocessor. A computer system usually requires input and output (I/O)
devices that make it easier for humans to communicate with the machine.
These input devices usually include a keyboard and a video display.

How does the microprocessor communicate with these peripherals (as
anything connected to a microprocessor that isn’t memory is called)? Peripher-
als are built so that they have an interface similar to memory. A microprocessor
can write into and read from a peripheral by specifying certain addresses that
the peripheral responds to. In some microprocessors, peripherals actually
replace some addresses that would normally be used to address memory. This
configuration is known as memory-mapped I/O. In the 8080, however, 256
additional addresses beyond the normal 65,536 are specifically reserved for
input and output devices. These are known as I/O ports. The I/O address
signals are A0 through A7, but I/O accesses are distinguished from memory
accesses through signals latched by the 8228 System Controller chip.

The OUT instruction writes the contents of the accumulator to a port
addressed by the byte that follows the instruction. The IN instruction reads
a byte into the accumulator.

Opcode Instruction
D3 OUT pp
DB IN pp

Peripherals sometimes need to get the attention of the microprocessor. For
example, when you press a key on a keyboard, it’s usually helpful if the
microprocessor knows about this event right away. This is a accomplished
by a mechanism called an interrupt, which is a signal connected from the
peripheral to the INT input of the 8080.

When the 8080 is reset, however, it doesn’t respond to interrupts. A pro-
gram must execute the EI (Enable Interrupts) instruction to enable interrupts
and can later execute DI (Disable Interrupts) to disable them:

Opcode Instruction
F3 DI
FB EI

The INTE output signal from the 8080 indicates when interrupts have
been enabled. When a peripheral needs to interrupt the microprocessor, it
sets the INT input of the 8080 to 1. The 8080 responds to that by fetching
an instruction from memory, but control signals indicate that an interrupt
is occurring. The peripheral usually responds by supplying one of the fol-
lowing instructions to the 8080:

Opcode Instruction Opcode Instruction

C7 RST 0 E7 RST 4
CF RST 1 EF RST 5
D7 RST 2 F7 RST 6
DF RST 3 FF RST 7

Two Classic Microprocessors 281

These are called Restart instructions, and they’re similar to Call instruc-
tions in that the current Program Counter is saved on the stack. But the
Restart instructions then jump to specific locations: RST 0 jumps to address
0000h, RST 1 to address 0008h, and so forth, up to RST 7, which jumps
to address 0038h. Located at these addresses are sections of code that deal
with the interrupt. For example, an interrupt from the keyboard might cause
a RST 4 instruction to be executed. At address 0020h begins some code to
read a byte from the keyboard. (I’ll explain this more fully in Chapter 21.)

So far I’ve described 243 opcodes. The 12 bytes that aren’t associated with
any opcodes are 08h, 10h, 18h, 20h, 28h, 30h, 38h, CBh, D9h, DDh, EDh,
and FDh. That brings the total to 255. There’s one more opcode I need to
mention, and that’s this one:

Opcode Instruction
00 NOP

NOP stands for (and is pronounced) no op, as in no operation. The NOP
causes the processor to do absolutely nothing. What’s it good for? Filling
space. The 8080 can usually execute a bunch of NOP instructions without
anything bad happening.

I won’t go into nearly as much detail discussing the Motorola 6800 be-
cause many of the aspects of its design and functionality are quite similar
to those of the 8080. Here are the 40 pins of the 6800:

VSS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

A12

A13

A14

A15

D7

D6

D5

D4

D3

D2

D1

D0

R/W

DBE
02

TSC
RESET

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

VCC

BA
NMI

VMA
IRQ

01

HALT
VSS

MC6800

The VSS indicates Ground, and VCC is 5 volts. Like the 8080, the 6800 has
16 output Address signals and 8 Data signals used for both input and output.
There’s a RESET signal and a R/W (read/write) signal. The I signal stands

282 Chapter Nineteen

for interrupt request. The signal timing of the 6800 is considered to be much
simpler than that of the 8080. What the 6800 doesn’t have is the concept
of I/O ports. All input and output devices must be part of the 6800 memory
address space.

The 6800 has a 16-bit Program Counter, a 16-bit Stack Pointer, an 8-bit
Status Register (for flags), and two 8-bit accumulators called A and B. These
are both considered accumulators (rather than B being considered just a
register) because there is nothing that you can do with A that you can’t also
do with B. There are no additional 8-bit registers, however.

The 6800 instead has a 16-bit index register that can be used to hold a
16-bit address, much like the register pair HL is used in the 8080. For many
instructions, an address can be formed from the sum of the index register
and the byte that follows the opcode.

While the 6800 does just about the same operations as the 8080—loading,
storing, adding, subtracting, shifting, jumping, calling—it should be obvious
that the opcodes and the mnemonics are completely different. Here, for
example, are the 6800 Branch instructions:

Opcode Instruction Meaning
20h BRA Branch
22h BHI Branch If Higher
23h BLS Branch If Lower or Same
24h BCC Branch If Carry Clear
25h BCS Branch If Carry Set
26h BNE Branch If Not Equal
27h BEQ Branch If Equal
28h BVC Branch If Overflow Clear
29h BVS Branch If Overflow Set
2Ah BPL Branch If Plus
2Bh BMI Branch If Minus
2Ch BGE Branch If Greater than or Equal to Zero
2Dh BLT Branch If Less than Zero
2Eh BGT Branch If Greater than Zero
2Fh BLE Branch If Less than or Equal to Zero

The 6800 doesn’t have a Parity flag like the 8080, but it does have a flag the
8080 doesn’t have—an Overflow flag. Some of these Branch instructions
depend on combinations of flags.

Of course the 8080 and 6800 instructions sets are different. The two chips
were designed about the same time by two different groups of engineers at
two different companies. What this incompatibility means is that neither chip
can execute the other chip’s machine codes. Nor can an assembly-language
program written for one chip be translated into opcodes that run on the other
chip. Writing computer programs that run on more than one processor is
the subject of Chapter 24.

Here’s another interesting difference between the 8080 and the 6800: In
both microprocessors, the instruction LDA loads the accumulator from a

Two Classic Microprocessors 283

specified memory address. In the 8080, for example, the following sequence
of bytes:

3Ah

7Bh

34h

8080 LDA instruction

will load the accumulator with the byte stored at memory address 347Bh.
Now compare that with the 6800 LDA instruction using the so-called 6800
extended addressing mode:

B6h

7Bh

34h

6800 LDA instruction

This sequence of bytes loads accumulator A with the byte stored at memory
address 7B34h.

The difference is subtle. You expect the opcode to be different, of course:
3Ah for the 8080 and B6h for the 6800. But the two microprocessors treat
the address that follows the opcode differently. The 8080 assumes that the
low-order byte comes first, followed by the high-order byte. The 6800 as-
sumes that the high-order byte comes first!

This fundamental difference in how Intel and Motorola microprocessors
store multibyte values has never been resolved. To this very day, Intel mi-
croprocessors continue to store multibyte values with the least-significant
byte first (that is, at the lowest memory address), and Motorola micropro-
cessors store multibyte values with the most-significant byte first.

These two methods are known as little-endian (the Intel way) and big-
endian (the Motorola way). It might be fun to argue over which method is
better, but before you do so, be aware that the term Big-Endian comes from
Jonathan Swift’s Gulliver’s Travels and refers to the war between Lilliput and
Blefuscu over which end of an egg to break before eating it. Such an argu-
ment is probably purposeless. (On the other hand, I feel obliged to confess
that the approach I used in the Chapter 17 computer wasn’t the one I person-
ally prefer!) Despite neither method being intrinsically “right,” the difference
does create an additional incompatibility problem when sharing informa-
tion between systems based on little-endian and big-endian machines.

What became of these two microprocessors? The 8080 was used in what
some people have called the first personal computer but which is probably
more accurately the first home computer. This is the Altair 8800, which
appeared on the cover of the January 1975 issue of Popular Electronics.

284 Chapter Nineteen

When you look at the Altair 8800, the lights and switches on the front panel
should seem familiar. This is the same type of primitive “control panel”
interface that I proposed for the 64-KB RAM array in Chapter 16.

The 8080 was followed by the Intel 8085 and, more significantly, by the
Z-80 chip made by Zilog, a rival of Intel founded by former Intel employee
Federico Faggin, who had done important work on the 4004. The Z-80 was
entirely compatible with the 8080 but added many more very useful instruc-
tions. In 1977, the Z-80 was used in the Radio Shack TRS-80 Model 1.

Also in 1977, the Apple Computer Company, founded by Steven Jobs and
Stephen Wozniak, introduced the Apple II. The Apple II, however, used
neither the 8080 nor the 6800 but instead used MOS Technology’s less ex-
pensive 6502 chip, which was an enhancement of the 6800.

In June 1978, Intel introduced the 8086, which was a 16-bit micropro-
cessor that could access 1 megabyte of memory. The 8086 opcodes weren’t
compatible with the 8080, but I should note that they included instructions
to multiply and divide. A year later, Intel introduced the 8088, which inter-
nally was identical to the 8086 but externally accessed memory in bytes, thus
allowing the microprocessor to use the more-prevalent 8-bit support chips
designed for the 8080. IBM used the 8088 chip in its 5150 Personal Com-
puter—commonly called the IBM PC—introduced in the fall of 1981.

IBM’s entrance into the personal computer market had a great impact,
with many companies releasing machines that were compatible with the PC.
(What it means to be compatible will be explored more in subsequent chap-
ters.) Over the years “IBM PC compatible” has also implied “Intel inside,”
specifically Intel microprocessors of the so-called x86 family. The x86 family
continued in 1982 with the 186 and 286 chips, in 1985 with the 32-bit 386
chip, in 1989 with the 486, and beginning in 1993, with the Intel Pentium
line of microprocessors that are currently used in PC compatibles. While these

Two Classic Microprocessors 285

Intel microprocessors have ever-increasing instruction sets, they continue to
support the opcodes of all earlier processors starting with the 8086.

The Apple Macintosh, first introduced in 1984, used the Motorola 68000,
a 16-bit microprocessor that’s a direct descendant of the 6800. The 68000
and its descendants (often called the 68K series) are some of the most be-
loved microprocessors ever made.

Since 1994, Macintosh computers have used the PowerPC microproces-
sor that was developed in a coalition of Motorola, IBM, and Apple. The
PowerPC was designed with a type of microprocessor architecture known
as RISC (Reduced Instruction Set Computing), which attempts to increase
the speed of the processor by simplifying it in some respects. In a RISC
computer, generally each instruction is the same length (32 bits on the
PowerPC), memory accesses are restricted to just load and store instructions,
and instructions do simple operations rather than complex ones. RISC pro-
cessors usually have plenty of registers to avoid frequent accesses of memory.

The PowerPC can’t execute 68K code because it has a whole different
instruction set. But the PowerPC microprocessors currently used in the Apple
Macintoshes can emulate the 68K. An emulator program running on the
PowerPC examines each opcode of a 68K program, one by one, and performs
an appropriate action. It’s not as fast as native PowerPC code, but it works.

According to Moore’s Law, the number of transistors in microprocessors
should double every 18 months. What are those many additional transistors
used for?

Some of the transistors accommodate the increase in processor data width,
from 4 bits to 8 bits to 16 bits to 32 bits. Another part of the increase is due
to new instructions. Most microprocessors these days have instructions to
do floating-point arithmetic (as I’ll explain in Chapter 23); new instructions
have also been added to microprocessors to do some of the repetitive cal-
culations required to display pictures or movies on computer screens.

Modern processors use several techniques to help improve their speed.
One is pipelining. When the processor is executing one instruction, it’s read-
ing in the next instructions, even to a certain extent anticipating how Jump
instructions will alter the execution flow. Modern processors also include
a cache (pronounced cash). This is an array of very fast RAM inside the
processor that is used to store recently executed instructions. Because com-
puter programs often execute small loops of instructions, the cache prevents
these instructions from being repetitively reloaded. All these speed-improving
features require more logic and more transistors in the microprocessor.

As I mentioned earlier, the microprocessor is only one part (although the
most important part) of a complete computer system. We’ll build such a
system in Chapter 21, but first we must learn how to encode something else
in memory besides opcodes and numbers. We must go back to first grade
and learn again how to read and write text.

286

Chapter Twenty

ASCII and a
Cast of Characters

igital computer memory stores only bits, so anything that we want
to work with on the computer must be stored in the form of bits.
We’ve already seen how bits can represent numbers and machine

code. The next challenge must be text. After all, the great bulk of the accu-
mulated information of this world is in the form of text, and our libraries
are full of books and magazines and newspapers. Although we’d eventually
like to use our computers to store sounds and pictures and movies, text is a
much easier place to begin.

To represent text in digital form, we must develop some kind of system
in which each letter corresponds to a unique code. Numbers and punctua-
tion also occur in text, so codes for these must be developed as well. In short,
we need codes for all alphanumeric characters. Such a system is sometimes
known as a coded character set, and the individual codes are known as
character codes.

The first question must be: How many bits do we need for these codes?
The answer isn’t an easy one!

When we think about representing text using bits, let’s not get too far
ahead of ourselves. We’re accustomed to seeing text nicely formatted on the
pages of a book or in the columns of a magazine or newspaper. Paragraphs
are neatly separated into lines of a consistent width. Yet this formatting isn’t
essential to the text itself. When we read a short story in a magazine and years
later encounter that same story in a book, we don’t think the story has changed
just because the text column is wider in the book than in the magazine.

D

ASCII and a Cast of Characters 287

In other words, don’t think about text as formatted into two-dimensional
columns on the printed page. Think of text instead as a one-dimensional
stream of letters, numbers, and punctuation marks, with perhaps an addi-
tional code to indicate the end of one paragraph and the start of another.

Again, if you read a story in a magazine and later see it in a book and the
typeface is a little different, is that a big deal? If the magazine version begins

Call me Ishmael.

and the book version begins

Call me Ishmael.

is that something we really want to be concerned with just yet? Probably not.
Yes, the typeface subtly affects the tone of the text, but the story hasn’t been
lost with the change of typeface. The typeface can always be changed back.
There’s no harm done.

Here’s another way we’re going to simplify the problem: Let’s stick to plain
vanilla text. No italics, no boldface, no underlining, no colors, no outlined
letters, no subscripts, no superscripts. And no accent marks. No Å or é or
ñ or ö. Just the naked Latin alphabet as it’s used in 99 percent of English.

In our earlier studies of Morse code and Braille, we’ve already seen how
the letters of the alphabet can be represented in a binary form. Although these
systems are fine for their specific purposes, both have their failings when it
comes to computers. Morse code, for example, is a variable-width code: It
uses shorter codes for frequently used letters and longer codes for less com-
mon ones. Such a code is suitable for telegraphy, but it might be awkward
for computers. In addition, Morse code doesn’t differentiate between upper-
case and lowercase versions of letters.

Braille is a fixed-width code, which is much preferable for computers.
Every letter is represented by 6 bits. Braille also differentiates between up-
percase and lowercase letters, although it does so with the use of a special
escape code. This code indicates that the next character is uppercase. What
this really means is that every capital letter requires two codes rather than
one. Numbers are represented with a shift code: After that special code, the
codes that follow are assumed to represent numbers until another shift code
signals the return to letters.

Our goal here is to develop a coded character set so that a sentence
such as

I have 27 sisters.

can be represented by a series of codes, each of which is a certain number of
bits. Some of the codes will represent letters, some will representation punc-
tuation marks, and some will represent numbers. There should even be a code
that represents the space between words. There are 18 characters in that
sentence (including the spaces between the words). The consecutive character
codes for such a sentence are often referred to as a text string.

That we need codes for numbers in a text string such as 27 might seem
odd because we’ve been using bits to represent numbers for many chapters

288 Chapter Twenty

now. We may be tempted to assume that the codes for the 2 and 7 in this
sentence are simply the binary numbers 10 and 111. But that’s not neces-
sarily the case. In the context of a sentence such as this, the characters 2 and 7
can be treated like any other character found in written English. They can
have character codes that are completely unrelated to the actual values of
the numbers.

Perhaps the most economical code for text is a 5-bit code that originated
in an 1874 printing telegraph developed by Emile Baudot (pronounced baw-
doh), an officer in the French Telegraph Service; his code was adopted by
the Service in 1877. This code was later modified by Donald Murray and
standardized in 1931 by the Comité Consultatif International Télégraphique
et Téléphonique (CCITT), which is now known as the International Tele-
communication Union (ITU). The code is formally known as the International
Telegraph Alphabet No. 2, or ITA-2, and it’s more popularly known in the
United States as Baudot, although it’s more correctly called the Murray code.

In the twentieth century, Baudot was often used in teletypewriters. A
Baudot teletypewriter has a keyboard that looks something like a typewriter,
except that it has only 30 keys and a spacebar. Teletypewriter keys are ac-
tually switches that cause a binary code to be generated and sent down the
teletypewriter’s output cable, one bit after the other. A teletypewriter also
contains a printing mechanism. Codes coming through the teletypewriter’s
input cable trigger electromagnets that print characters on paper.

Because Baudot is a 5-bit code, there are only 32 codes. The hexadeci-
mal values of these codes range from 00h through 1Fh. Here’s how the 32
available codes correspond to the letters of the alphabet:

Hex Code Baudot Letter Hex Code Baudot Letter
00 10 E
01 T 11 Z
02 Carriage Return 12 D
03 O 13 B
04 Space 14 S
05 H 15 Y
06 N 16 F
07 M 17 X
08 Line Feed 18 A
09 L 19 W
0A R 1A J
0B G 1B Figure Shift
0C I 1C U
0D P 1D Q
0E C 1E K
0F V 1F Letter Shift

Code 00h isn’t assigned to anything. Of the remaining 31 codes, 26 are
assigned to letters of the alphabet and the other five are indicated by itali-
cized words or phrases in the table.

ASCII and a Cast of Characters 289

Code 04h is the Space code, which is used for the space separating words.
Codes 02h and 08h are labeled Carriage Return and Line Feed. This termi-
nology comes from the typewriter. When you’re typing on a typewriter and
reach the end of a line, you push a lever or button that does two things. First,
it causes the carriage to be moved to the right so that the next line begins
at the left side of the paper. That’s a carriage return. Second, the typewriter
rolls the carriage so that the next line is underneath the line you just finished.
That’s the linefeed. In Baudot, separate keyboard keys generate these two
codes. A Baudot teletypewriter printer responds to these two codes when
printing.

Where are the numbers and punctuation marks in the Baudot system?
That’s the purpose of code 1Bh, identified in the table as Figure Shift. After
the Figure Shift code, all subsequent codes are interpreted as numbers or
punctuation marks until the Letter Shift code (1Fh) causes them to revert
to the letters. Here are the codes for the numbers and punctuation:

Hex Code Baudot Figure Hex Code Baudot Figure
00 10 3
01 5 11 +
02 Carriage Return 12 Who Are You?

03 9 13 ?
04 Space 14 ‘
05 # 15 6
06 , 16 $
07 . 17 /
08 Line Feed 18 -
09) 19 2
0A 4 1A Bell
0B & 1B Figure Shift

0C 8 1C 7
0D 0 1D 1
0E : 1E (
0F = 1F Letter Shift

Actually, the code as formalized by the ITU doesn’t define codes 05h, 0Bh,
and 16h, and instead reserves them “for national use.” The table shows how
these codes were used in the United States. The same codes were often used
for accented letters of some European languages. The Bell code is supposed
to ring an audible bell on the teletypewriter. The “Who Are You?” code
activates a mechanism whereby a teletypewriter can identify itself.

Like Morse code, this 5-bit code doesn’t differentiate between uppercase
and lowercase. The sentence

I SPENT $25 TODAY.

is represented by the following stream of hexadecimal data:

0C 04 14 0D 10 06 01 04 1B 16 19 01 1F 04 01 03 12 18 15 1B 07 02 08

290 Chapter Twenty

Notice the three shift codes: 1Bh right before the number, 1Fh after the
number, and 1Bh again before the final period. The line concludes with
carriage-return and linefeed codes.

Unfortunately, if you sent this stream of data to a teletypewriter printer
twice in a row, it would come out like this:

I SPENT $25 TODAY.
8 ‘03,5 $25 TODAY.

What happened? The last shift code the printer received before the second
line was a Figure Shift code, so the codes at the beginning of the second line
were interpreted as numbers.

Problems like this are typical nasty results of using shift codes. Although
Baudot is certainly an economical code, it’s probably preferable to use unique
codes for numbers and punctuation, as well as separate codes for lowercase
and uppercase letters.

So if we want to figure out how many bits we need for a better character
encoding system than Baudot, just add them up: We need 52 codes just for
the uppercase and lowercase letters and 10 codes for the digits 0 through 9.
We’re up to 62 already. Throw in a few punctuation marks, and we top 64
codes, which means we need more than 6 bits. But we seem to have lots of
leeway before we exceed 128 characters, which would require 8 bits.

So the answer is 7. We need 7 bits to represent the characters of English
text if we want uppercase and lowercase with no shifting.

And what are these codes? Well, the actual codes can be anything we want.
If we were going to build our own computer, and we were going to build
every piece of hardware required by this computer, and we were going to
program this computer ourselves and never use the computer to connect to
any other computer, we could make up our own codes. All we need do is
assign every character we’ll be using a unique code.

But since it’s rarely the case that computers are built and used in isola-
tion, it makes more sense for everyone to agree to use the same codes. That
way, the computers that we build can be more compatible with one another
and maybe even actually exchange textual information.

We also probably shouldn’t assign codes in a haphazard manner. For
example, when we work with text on the computer, certain advantages ac-
crue if the letters of the alphabet are assigned to sequential codes. This or-
dering scheme makes alphabetizing and sorting easier, for example.

Fortunately, such a standard has already been developed. It’s called the
American Standard Code for Information Interchange, abbreviated ASCII, and
referred to with the unlikely pronunciation ASS-key. It was formalized in 1967
and remains the single most important standard in the entire computer indus-
try. With one big exception (which I’ll describe later), whenever you deal with
text on a computer you can be sure that ASCII is involved in some way.

ASCII is a 7-bit code using binary codes 0000000 through 1111111,
which are hexadecimal codes 00h through 7Fh. Let’s take a look at the ASCII
codes, but let’s not start at the very beginning because the first 32 codes are
conceptually a bit more difficult than the rest of the codes. I’ll begin with

ASCII and a Cast of Characters 291

the second batch of 32 codes, which includes punctuation and the ten nu-
meric digits. This table shows the hexadecimal code and the character that
corresponds to that code:

Hex Code ASCII Character Hex Code ASCII Character
20 Space 30 0
21 ! 31 1
22 “ 32 2
23 # 33 3
24 $ 34 4
25 % 35 5
26 & 36 6
27 ‘ 37 7
28 (38 8
29) 39 9
2A * 3A :
2B + 3B ;
2C , 3C <
2D - 3D =
2E . 3E >
2F / 3F ?

Notice that 20h is the space character that divides words and sentences.
The next 32 codes include the uppercase letters and some additional

punctuation. Aside from the @ sign and the underscore, these punctuation
symbols aren’t normally found on typewriters. They’re all now standard on
computer keyboards.

Hex Code ASCII Character Hex Code ASCII Character
40 @ 50 P
41 A 51 Q
42 B 52 R
43 C 53 S
44 D 54 T
45 E 55 U
46 F 56 V
47 G 57 W
48 H 58 X
49 I 59 Y
4A J 5A Z
4B K 5B [
4C L 5C \
4D M 5D]
4E N 5E ^
4F O 5F _

292 Chapter Twenty

The next 32 characters include all the lowercase letters and some addi-
tional punctuation, again not often found on typewriters:

Hex Code ASCII Character Hex Code ASCII Character
60 ` 70 p
61 a 71 q
62 b 72 r
63 c 73 s
64 d 74 t
65 e 75 u
66 f 76 v
67 g 77 w
68 h 78 x
69 i 79 y
6A j 7A z
6B k 7B {
6C l 7C |
6D m 7D }
6E n 7E ~
6F o

Notice that this table is missing the last character corresponding to code 7Fh.
If you’re keeping count, the three tables here show a total of 95 characters.
Because ASCII is a 7-bit code, 128 codes are possible, so 33 more codes
should be available. I’ll get to those shortly.

The text string

Hello, you!

can be represented in ASCII using the hexadecimal codes

48 65 6C 6C 6F 2C 20 79 6F 75 21

Notice the comma (code 2C), the space (code 20) and the exclamation point
(code 21) as well as the codes for the letters. Here’s another short sentence:

I am 12 years old.

and its ASCII representation:

49 20 61 6D 20 31 32 20 79 65 61 72 73 20 6F 6C 64 2E

Notice that the number 12 in this sentence is represented by the hexadeci-
mal numbers 31h and 32h, which are the ASCII codes for the digits 1 and 2.
When the number 12 is part of a text stream, it should not be represented
by the hexadecimal codes 01h and 02h, or the BCD code 12h, or the hexa-
decimal code 0Ch. These other codes all mean something else in ASCII.

ASCII and a Cast of Characters 293

A particular uppercase letter in ASCII differs from its lowercase counter-
part by 20h. This fact makes it fairly easy to write some code that (for ex-
ample) capitalizes a string of text. Suppose a certain area of memory contains
a text string, one character per byte. The following 8080 subroutine assumes
that the address of the first character in the text string is stored in register
HL. Register C contains the length of that text string, which is the number
of characters:

Capitalize: MOV A,C ; C = number of characters left
 CPI A,00h ; Compare with 0
 JZ AllDone ; If C is 0, we’re finished

 MOV A,[HL] ; Get the next character
 CPI A,61h ; Check if it’s less than ‘a’
 JC SkipIt ; If so, ignore it

 CPI A,7Bh ; Check if it’s greater than ‘z’
 JNC SkipIt ; If so, ignore it

 SBI A,20h ; It’s lowercase, so subtract 20h
 MOV [HL],A ; Store the character

SkipIt: INX HL ; Increment the text address
 DCR C ; Decrement the counter
 JMP Capitalize ; Go back to the top

AllDone: RET

The statement that subtracts 20h from the lowercase letter to convert it to
uppercase can be replaced with this:

ANI A,DFh

The ANI instruction is an AND Immediate. It performs a bitwise AND
operation between the value in the accumulator and the value DFh, which
is 11011111 in binary. By bitwise, I mean that the instruction performs an
AND operation between each pair of corresponding bits that make up the
two numbers. This AND operation preserves all the bits in A except the third
from the left, which is set to 0. Setting that bit to 0 also effectively converts
an ASCII lowercase letter to uppercase.

The 95 codes shown above are said to refer to graphic characters because
they have a visual representation. ASCII also includes 33 control characters
that have no visual representation but instead perform certain functions. For
the sake of completeness, here are the 33 ASCII control characters, but don’t
worry if they seem mostly incomprehensible. At the time ASCII was devel-
oped, it was intended mostly for teletypewriters, and many of these codes
are currently obscure.

294 Chapter Twenty

Hex Code Acronym Control Character Name
00 NUL Null (Nothing)
01 SOH Start of Heading
02 STX Start of Text
03 ETX End of Text
04 EOT End of Transmission
05 ENQ Enquiry (i.e., Inquiry)
06 ACK Acknowledge
07 BEL Bell
08 BS Backspace
09 HT Horizontal Tabulation
0A LF Line Feed
0B VT Vertical Tabulation
0C FF Form Feed
0D CR Carriage Return
0E SO Shift-Out
0F SI Shift-In
10 DLE Data Link Escape
11 DC1 Device Control 1
12 DC2 Device Control 2
13 DC3 Device Control 3
14 DC4 Device Control 4
15 NAK Negative Acknowledge
16 SYN Synchronous Idle
17 ETB End of Transmission Block
18 CAN Cancel
19 EM End of Medium
1A SUB Substitute Character
1B ESC Escape
1C FS File Separator or Information Separator 4
1D GS Group Separator or Information Separator 3
1E RS Record Separator or Information Separator 2
1F US Unit Separator or Information Separator 1
7F DEL Delete

The idea here is that control characters can be intermixed with graphic
characters to do some rudimentary formatting of the text. This is easiest to
understand if you think of a device—such as a teletypewriter or a simple
printer—that types characters on a page in response to a stream of ASCII
codes. The device’s printing head normally responds to character codes by
printing a character and moving one space to the right. The most important
control characters alter this normal behavior.

For example, consider the hexadecimal character string

41 09 42 09 43 09

ASCII and a Cast of Characters 295

The 09 character is a Horizontal Tabulation code, or Tab for short. If you
think of all the horizontal character positions on the printer page as being
numbered starting with 0, the Tab code usually means to print the next
character at the next horizontal position that’s a multiple of 8, like this:

A B C

This is a handy way to keep text lined up in columns.
Even today, many computer printers respond to a Form Feed code (12h)

by ejecting the current page and starting a new page.
The Backspace code can be used for printing composite characters on

some old printers. For example, suppose the computer controlling the tele-
typewriter wanted to display a lowercase e with a grave accent mark, like
so: è. This could be achieved by using the hexadecimal codes 65 08 60.

By far the most important control codes are Carriage Return and Line
Feed, which have the same meaning as the similar Baudot codes. On a printer,
the Carriage Return code moves the printing head to the left side of the page,
and the Line Feed code moves the printing head one line down. Both codes
are generally required to go to a new line. A Carriage Return can be used
by itself to print over an existing line, and a Line Feed can be used by itself
to skip to the next line without moving to the left margin.

Although ASCII is the dominant standard in the computing world, it isn’t
used on many of IBM’s larger computer systems. In connection with the
System/360, IBM developed its own 8-bit character code known as the Ex-
tended BCD Interchange Code, or EBCDIC (pronounced EBB-see-dick),
which was an extension of an earlier 6-bit code known as BCDIC, which was
derived from codes used on IBM punch cards. This style of punch card—
capable of storing 80 characters of text—was introduced by IBM in 1928
and used for over 50 years.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

00

11

22

33

44

55

66

77

88

99

1 2 3 54 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980

1 2 3 54 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
IBM 8081

When considering the relationship between punch cards and their associated
8-bit EBCDIC character codes, keep in mind that these codes evolved over
many decades under several different types of technologies. For that reason,
don’t expect to discover too much logic or consistency.

A character is encoded on a punch card by a combination of one or more
rectangular holes punched in a single column. The character itself is often

296 Chapter Twenty

printed near the top of the card. The lower 10 rows are identified by num-
ber and are known as the 0-row, the 1-row, and so forth through the 9-row.
The unnumbered row above the 0-row is called the 11-row, and the top row
is called the 12-row. There is no 10-row.

More IBM punch card terminology: Rows 0 through 9 are known as the
digit rows, or digit punches. Rows 11 and 12 are known as the zone rows,
or zone punches. And some IBM punch card confusion: Sometimes rows 0
and 9 are considered to be zone rows rather than digit rows.

An 8-bit EBCDIC character code is composed of a high-order nibble (4-
bit value) and a low-order nibble. The low-order nibble is the BCD code
corresponding to the digit punches of the character. The high-order nibble
is a code corresponding (in a fairly arbitrary way) to the zone punches of
the character. You’ll recall from Chapter 19 that BCD stands for binary-
coded decimal—a 4-bit code for digits 0 through 9.

For the digits 0 through 9, there are no zone punches. That lack of punches
corresponds to a high-order nibble of 1111. The low-order nibble is the BCD
code of the digit punch. Here’s a table of EBCDIC codes for the digits 0
through 9:

Hex Code EBCDIC Character
F0 0
F1 1
F2 2
F3 3
F4 4
F5 5
F6 6
F7 7
F8 8
F9 9

For the uppercase letters, a zone punch of just the 12-row is indicated by
the nibble 1100, a zone punch of just the 11-row is indicated by the nibble
1101, and a zone punch of just the 0-row is indicated by the nibble 1110.
The EBCDIC codes for the uppercase letters are

Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character
C1 A D1 J
C2 B D2 K E2 S
C3 C D3 L E3 T
C4 D D4 M E4 U
C5 E D5 N E5 V
C6 F D6 O E6 W
C7 G D7 P E7 X
C8 H D8 Q E8 Y
C9 I D9 R E9 Z

ASCII and a Cast of Characters 297

Notice the gaps in the numbering of these codes. In some applications, these
gaps can be maddening when you’re writing programs using EBCDIC text.

The lowercase letters have the same digit punches as the uppercase let-
ters but different zone punches. For lowercase letters a through i, the 12-row
and 0-row are punched, corresponding to the code 1000. For j through r,
the 12-row and 11-row are punched. This is the code 1001. For the letters s
through z, the 11-row and 0-row are punched—the code 1010. The EBCDIC
codes for the lowercase letters are

Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character

81 a 91 j
82 b 92 k A2 s
83 c 93 l A3 t
84 d 94 m A4 u
85 e 95 n A5 v
86 f 96 o A6 w
87 g 97 p A7 x
88 h 98 q A8 y
89 i 99 r A9 z

Of course, there are other EBCDIC codes for punctuation and control charac-
ters, but it’s hardly necessary to do a full-blown exploration of this system.

It might seem as if each column of an IBM punch card is sufficient to
encode 12 bits of information. Each hole is a bit, right? So it should be
possible to encode ASCII character codes on a punch card using only 7 of
the 12 positions in each column. But in practice, this doesn’t work very well.
Too many holes get punched, threatening the physical integrity of the card.

Many of the 8-bit codes in EBCDIC aren’t defined, suggesting that the
use of 7 bits in ASCII makes more sense. At the time ASCII was being de-
veloped, memory was very expensive. Some people felt that ASCII should
be a 6-bit code using a shift character to differentiate between lowercase and
uppercase to conserve memory. Once that idea was rejected, others believed
that ASCII should be an 8-bit code because even at that time it was consid-
ered more likely that computers would have 8-bit architectures than 7-bit
architectures. Of course, 8-bit bytes are now the standard. Although ASCII
is technically a 7-bit code, it’s almost universally stored as 8-bit values.

The equivalence of bytes and characters is certainly convenient because
we can get a rough sense of how much computer memory a particular text
document requires simply by counting the characters. To some, the kilos and
megas of computer storage are more comprehensible when expressed in
terms of text.

For example, a traditional double-spaced typewritten 8 1⁄2-by-11-inch page
with 1-inch margins has about 27 lines of text. Each line is about 6 1⁄2 inches
wide with 10 characters per inch, for a total of about 1750 bytes. A single-
space typewritten page has about double that, or 3.5 kilobytes.

298 Chapter Twenty

A page in The New Yorker magazine has 3 columns of text with 60 lines
per column and about 40 characters per line. That’s 7200 characters (or
bytes) per page.

The New York Times has six columns of text per page. If the entire page
is covered with text without any titles or pictures (which is highly unusual),
each column has 155 lines of about 35 characters each. The entire page has
32,550 characters, or 32 kilobytes.

A hardcover book has about 500 words per page. An average word is
about 5 letters—actually 6 characters, counting the space between words.
So a book has about 3000 characters per page. Let’s say the average book
has 333 pages, which may be a made-up figure but nicely implies that the
average book is about 1 million bytes, or 1 megabyte.

Of course, books vary all over the place:

F. Scott Fitzgerald’s The Great Gatsby is about 300 kilobytes.
J. D. Salinger’s Catcher in the Rye is about 400 kilobytes.
Mark Twain’s The Adventures of Huckleberry Finn is about 540 kilobytes.
John Steinbeck’s The Grapes of Wrath is about a megabyte.
Herman Melville’s Moby Dick is about 1.3 megabytes.
Henry Fielding’s The History of Tom Jones is about 2.25 megabytes.
Margaret Mitchell’s Gone with the Wind is about 2.5 megabytes.
Stephen King’s complete and uncut The Stand is about 2.7 megabytes.
Leo Tolstoy’s War and Peace is about 3.9 megabytes.
Marcel Proust’s Remembrance of Things Past is about 7.7 megabytes.

The United States Library of Congress has about 20 million books for a
total of 20 trillion characters, or 20 terabytes, of text data. (It has a bunch
of photographs and sound recordings as well.)

Although ASCII is certainly the most important standard in the computer
industry, it isn’t perfect. The big problem with the American Standard Code
for Information Interchange is that it’s just too darn American! Indeed, ASCII
is hardly suitable even for other nations whose principal language is English.
Although ASCII includes a dollar sign, where is the British pound sign? And
what about the accented letters used in many Western European languages?
To say nothing of the non-Latin alphabets used in Europe, including Greek,
Arabic, Hebrew, and Cyrillic. Or the Brahmi scripts of India and Southeast
Asia, including Devanagari, Bengali, Thai, and Tibetan. And how can a 7-
bit code possibly handle the tens of thousands of ideographs of Chinese,
Japanese, and Korean and the ten thousand–odd Hangul syllables of Korean?

Even when ASCII was being developed, the needs of some other nations
were kept in mind, although without much consideration for non-Latin
alphabets. According to the published ASCII standard, ten ASCII codes (40h,
5Bh, 5Ch, 5Dh, 5Eh, 60h, 7Bh, 7Ch, 7Dh, and 7Eh) are available to be
redefined for national uses. In addition, the number sign (#) can be replaced
by the British pound sign (£), and the dollar sign ($) can be replaced by a
generalized currency sign (¤) if necessary. Obviously, replacing symbols

ASCII and a Cast of Characters 299

makes sense only when everyone involved in using a particular text docu-
ment containing these redefined codes knows about the change.

Because many computer systems store characters as 8-bit values, it’s
possible to devise an extended ASCII character set that contains 256 char-
acters rather than just 128. In such a character set, codes 00h through 7Fh
are defined just as they are in ASCII; codes 80h through FFh can be some-
thing else entirely. This technique has been used to define additional char-
acter codes to accommodate accented letters and non-Latin alphabets. As
an example, here’s a 96-character extension of ASCII called the Latin Alpha-
bet No. 1 that defines characters for codes A0h through FFh. In this table,
the high-order nibble of the hexadecimal character code is shown in the top
row; the low-order nibble is shown in the left column.

A- B- C- D- E- F-

-0 ° À Ð à ð

-1 ¡ ± Á Ñ á ñ

-2 ¢ ² Â Ò â ò

-3 £ ³ Ã Ó ã ó

-4 ¤ ´ Ä Ô ä ô

-5 ¥ µ Å Õ å õ

-6 ¦ ¶ Æ Ö æ ö

-7 § · Ç × ç ÷

-8 ¨ ¸ È Ø è ø

-9 © ¹ É Ù é ù

-A ª º Ê Ú ê ú

-B « » Ë Û ë û

-C ¬ ¼ Ì Ü ì ü

-D - ½ Í Ý í ý

-E ® ¾ Î Þ î þ

-F ¯ ¿ Ï ß ï ÿ

The character for code A0h is defined as a no-break space. Usually when a
computer program formats text into lines and paragraphs, it breaks each line
at a space character, which is ASCII code 20h. Code A0h is supposed to
be displayed as a space but can’t be used for breaking a line. A no-break space

300 Chapter Twenty

might be used in the text “WW II,” for example. Code ADh is defined as a
soft hyphen. This is a hyphen used to separate syllables in the middle of
words. It appears on the printed page only when it’s necessary to break a
word between two lines.

Unfortunately, many different extensions of ASCII have been defined over
the decades, leading to much confusion and incompatibility. ASCII has been
extended in a more radical way to encode the ideographs of Chinese, Japa-
nese, and Korean. In one popular encoding—called Shift-JIS (Japanese In-
dustrial Standard)—codes 81h through 9Fh actually represent the initial byte
of a 2-byte character code. In this way, Shift-JIS allows for the encoding of
about 6000 additional characters. Unfortunately, Shift-JIS isn’t the only
system that uses this technique. Three other standard double-byte character
sets (DBCS) are popular in Asia.

That there are a number of incompatible double-byte character sets is only
one of the problems with them. The other problem is that some characters—
specifically, the normal ASCII characters—are represented by 1-byte codes,
while the thousands of ideographs are represented by 2-byte codes. This
makes it difficult to work with such character sets.

Under the assumption that it’s preferable to have just one unambiguous
character encoding system that’s suitable for all the world’s languages, in
1988 several major computer companies got together and began develop-
ing an alternative to ASCII known as Unicode. Whereas ASCII is a 7-bit code,
Unicode is a 16-bit code. Each and every character in Unicode requires 2
bytes. That means that Unicode has character codes ranging from 0000h
through FFFFh and can represent 65,536 different characters. That’s enough
for all the world’s languages that are likely to be used in computer commu-
nication, with room for expansion.

Unicode doesn’t start from scratch. The first 128 characters of Unicode—
codes 0000h through 007Fh—are the same as the ASCII characters. Also,
Unicode codes 00A0h through 00FFh are the same as the Latin Alphabet
No. 1 extension of ASCII that I described earlier. Other worldwide standards
are also incorporated into Unicode.

While Unicode may be an obvious improvement over existing character
codes, that doesn’t guarantee it instant acceptability. ASCII and the myriad
flawed extensions of ASCII have become so entrenched in the computing
world that it will be difficult to dislodge them.

The only real problem with Unicode is that it makes invalid the old equiva-
lence between one character of text and 1 byte of storage. Encoded in ASCII,
The Grapes of Wrath is about 1 megabyte in size. Encoded in Unicode, it’s
about 2 megabytes. But that’s a small price to pay for a universal unambigu-
ous character encoding system.

301

Chapter Twenty-One

Get on the Bus

he processor is certainly the most important component of a com-
puter, but it’s not the only component. A computer also requires
random access memory (RAM) that contains machine-code instruc-

tions for the processor to execute. The computer must also include some way
for those instructions to get into RAM (an input device) and some way for
the results of the program to be observed (an output device). As you’ll also
recall, RAM is volatile—it loses its contents when the power is turned off.
So another useful component of a computer is a long-term storage device
that can retain code and data when the computer is turned off.

All the integrated circuits that make up a complete computer must be
mounted on circuit boards. In some smaller machines, all the ICs can fit on
a single board. But it’s more usual for the various components of the com-
puter to be divided among two or more boards. These boards communicate
with each other by means of a bus. A bus is simply a collection of digital sig-
nals that are provided to every board in a computer. These signals fall into
four categories:

• Address signals. These are signals generated by the micropro-
cessor and used mostly to address random access memory. But
they’re also used to address other devices attached to the computer.

• Data Output signals. These also are signals provided by the mi-
croprocessor. They’re used to write data to RAM or to other de-
vices. Be careful with the terms input and output. A data output
signal from the microprocessor becomes a data input signal to
RAM and other devices.

• Data Input signals. These are signals that are provided by other
parts of the computer and are read by the microprocessor. The

T

302 Chapter Twenty-One

data input signals most often originate in RAM output; this is
how the microprocessor reads the contents of memory. But other
components also provide data input signals to the microprocessor.

• Control signals. These are miscellaneous signals that usually cor-
respond to the control signals of the particular microprocessor
around which the computer is built. Control signals may origi-
nate in the microprocessor or from other devices to signal the
microprocessor. An example of a control signal is the signal used
by the microprocessor to indicate that it needs to write some data
output into a particular memory address.

In addition, the bus supplies power to the various boards that the computer
comprises.

One of the earliest popular busses for home computers was the S-100 bus,
which was introduced in 1975 in the first home computer, the MITS Altair.
Although this bus was based on the 8080 microprocessor, it was later adapted
to other processors such as the 6800. An S-100 circuit board is 5.3 inches
by 10 inches. One edge of the circuit board fits into a socket that has 100
connectors (hence the name S-100).

An S-100 computer contains a larger board called a motherboard (or main
board) that contains a number of S-100 sockets (perhaps 12 of them) wired
to one another. These sockets are sometimes called expansion slots. The S-
100 circuit boards (also called expansion boards) fit into these sockets. The
8080 microprocessor and support chips (some of which I mentioned in
Chapter 19) occupy one S-100 board. Random access memory occupies one
or more other boards.

Because the S-100 bus was designed for the 8080 chip, it has 16 address
signals, 8 data input signals, and 8 data output signals. (As you’ll recall, the
8080 itself combines the data input and data output signals. These signals
are divided into separate input and output signals by other chips on the
circuit board that contains the 8080.) The bus also includes 8 interrupt sig-
nals. These are signals generated by other devices when they need immedi-
ate attention from the CPU. For example (as we’ll see later in this chapter),
a keyboard might generate an interrupt signal when a key is pressed. A short
program run by the 8080 can then determine what that key was and take
some action. The board containing the 8080 also generally includes a chip
called the Intel 8214 Priority Interrupt Control Unit to handle these inter-
rupts. When an interrupt occurs, this chip generates an interrupt signal to
the 8080. When the 8080 acknowledges the interrupt, the chip provides a
RST (Restart) instruction that causes the microprocessor to save the current
program counter and branch to address 0000h, 0008h, 0010h, 0018h,
0020h, 0028h, 0030h, or 0038h depending on the interrupt.

If you were designing a new computer system that included a new type
of bus, you could choose whether to publish (or otherwise make available)
the specifications of the bus or to keep them secret.

If the specifications of a particular bus are made public, other manufac-
turers—so-called third-party manufacturers—can design and sell expansion

Get on the Bus 303

boards that work with that bus. The availability of these additional expan-
sion boards makes the computer more useful and hence more desirable. More
sales of the computer create more of a market for more expansion boards.
This phenomenon is the incentive for designers of most small computer
systems that adhere to the principle of open architecture, which allows other
manufacturers to create peripherals for the computer. Eventually, a bus might
be considered an industry-wide standard. Standards have been an important
part of the personal computer industry.

The most famous open architecture personal computer was the original
IBM PC introduced in the fall of 1981. IBM published a Technical Refer-
ence manual for the PC that contained complete circuit diagrams of the entire
computer, including all the expansion boards that IBM manufactured for it.
This manual was an essential tool that enabled many manufacturers to make
their own expansion boards for the PC and, in fact, to create entire clones
of the PC—computers that were nearly identical to IBM’s and ran all the same
software.

The descendants of that original IBM PC now account for about 90 per-
cent of the market in the desktop computers. Although IBM itself has only
a small share of this market, it could very well be that IBM’s share is larger
than if the original PC had a closed architecture with a proprietary design.
The Apple Macintosh was originally designed with a closed architecture, and
despite occasional flirtations with open architecture, that original decision
possibly explains why the Macintosh currently accounts for less than 10
percent of the desktop market. (Keep in mind that whether a computer sys-
tem is designed under the principle of open architecture or closed architec-
ture doesn’t affect the ability of other companies to write software that runs
on the computer. Only the manufacturers of certain video games have re-
stricted other companies from writing software for their systems.)

The original IBM PC used the Intel 8088 microprocessor, which can
address 1 megabyte of memory. Although internally the 8088 is a 16-bit
microprocessor, externally it addresses memory in 8-bit chunks. The bus that
IBM designed for the original PC is now called the ISA (Industry Standard
Architecture) bus. The expansion boards have 62 connectors. The signals
include 20 address signals, 8 combined data input and output signals, 6
interrupt requests, and 3 direct memory access (DMA) requests. DMA al-
lows storage devices (which I’ll describe toward the end of this chapter) to
perform more quickly than would otherwise be possible. Normally, the
microprocessor handles all reading from and writing to memory. But using
DMA, another device can bypass the microprocessor by taking over the bus
and reading from or writing to memory directly.

In an S-100 system, all components are mounted on expansion boards.
In the IBM PC, the microprocessor, some support chips, and some RAM are
located on what IBM called the system board but which is also often called
a motherboard or a main board.

In 1984, IBM introduced the Personal Computer AT, which used the 16-bit
Intel 80286 microprocessor that can address 16 megabytes of memory. IBM
retained the existing bus but added another 36-connector socket that included

304 Chapter Twenty-One

7 more address signals (although only 4 more were needed), 8 more data input
and output signals, 5 more interrupt requests, and 4 more DMA requests.

Busses need to be upgraded or replaced when microprocessors outgrow
them, either in data width (from 8 to 16 to 32 bits) or in the number of
address signals they output. But microprocessors also outgrow busses when
they achieve faster speeds. Early busses were designed for microprocessors
operating at a clock speed of several megahertz rather than several hundred
megahertz. When a bus isn’t properly designed for high speeds, it can give
off radio frequency interference (RFI) that causes static or other noise on
nearby radios and television sets.

In 1987, IBM introduced the Micro Channel Architecture (MCA) bus.
Some aspects of this bus had been patented by IBM, so IBM was able to
collect licensing fees from other companies that used the bus. Perhaps for
this reason, the MCA bus did not become an industry standard. Instead, in
1988 a consortium of nine companies (not including IBM) countered with
the 32-bit EISA (Extended Industry Standard Architecture) bus. More re-
cently, the Intel-designed Peripheral Component Interconnect (PCI) bus has
become common in PC-compatibles.

To understand how the various components of the computer work, it’s
again helpful to return to that earlier and simpler era of the mid-1970s. We
might imagine that we’re designing boards for the Altair, or perhaps for an
8080 or 6800 computer of our own design. We probably want to design some
memory for the computer and to have a keyboard for input, a TV set for
output, and perhaps some way to save the contents of memory when we turn
off the computer. Let’s look at the various interfaces we can design to add
these components to our computer.

You’ll recall from Chapter 16 that RAM arrays have address inputs, data
inputs, data outputs, and a signal used to write data into memory. The num-
ber of address inputs indicates the number of separate values that can be
stored in the RAM array:

Number of values in RAM array = 2 Number of address inputs

The number of data input and output signals indicates the size of the stored
values.

One popular memory chip for home computers in the mid-1970s was
the 2102:

1 2 3 4 5 6 7 8

CS

2102

16 15 14 13 12 11 10 9

A6 A5 R/W A1 A2 A3 A4 A0

A7 A8 A9 DO DI 5V

Get on the Bus 305

The 2102 is a member of the MOS (metal-oxide semiconductor) family of
semiconductors, which is the same technology used for the 8080 and 6800
microprocessors themselves. MOS semiconductors can be easily connected
to TTL chips; they generally have a higher density of transistors than TTL
but aren’t as fast.

As you can probably figure out by counting the address signals (A0 through
A9) and noting the single data output (DO) and data input (DI) signals, this
chip stores 1024 bits. Depending on the type of 2102 chip you’re using, the
read access time—the time it takes for the data output to be valid after a
particular address has been applied to the chip—ranges from 350 to 1000
nanoseconds. The R/W (read/write) signal is normally 1 when you’re read-
ing memory. When you want to write data into the chip, this signal must be
0 for a period of at least 170 to 550 nsec, again depending on the type of
2102 chip you’re using.

Of particular interest is the L signal, which stands for chip select. When
this signal is 1, the chip is deselected, which means that it doesn’t respond
to the R/W signal. The L signal has another profound effect on the chip,
however, that I’ll describe shortly.

Of course, if you’re putting together memory for an 8-bit microprocessor,
you want to organize this memory so that it stores 8-bit values rather than
1-bit values. At the very least, you’ll need to wire 8 of these 2102 chips
together to store entire bytes. You can do this by connecting all the
corresponding address signals, the R/W signals, and the L signals of eight
2102 chips. The result can be drawn like this:

This is a 1024 × 8 RAM array, or 1 KB of RAM.
From a practical perspective, you need to put the memory chips on a

circuit board. How many can you fit on one board? Well, if you really cram
them close together, you can fit 64 of these chips on a single S-100 board.
That will give you 8 KB of memory. But let’s go for a more modest 4 KB using
just 32 chips. Each set of chips that are wired together to store a whole byte
(as illustrated above) is known as a bank. A 4-KB memory board contains
four banks of 8 chips each.

Eight-bit microprocessors such as the 8080 and 6800 have 16-bit addresses
that can address a total of 64 KB of memory. When you wire a 4-KB memory

306 Chapter Twenty-One

board containing four banks of chips, the memory board’s 16 address signals
perform the following functions:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Select
the board

Select
the bank

Address the RAM

The 10 address signals A0 through A9 are directly wired to the RAM chips.
The address signals A10 and A11 select which of the four banks is being
addressed. The address signals A12 through A15 determine which addresses
apply to this particular board—in other words, the addresses that the board
responds to. The 4-KB memory board we’re designing can occupy one of
16 different 4-KB ranges in the entire 64-KB memory space of the
microprocessor:

0000h through 0FFFh, or
1000h through 1FFFh, or
2000h through 2FFFh, or
§
F000h through FFFFh.

For example, suppose we decide that this 4-KB memory board will apply to
addresses A000h through AFFFh. This means that addresses A000h through
A3FFh will apply to the first bank of 1-KB chips, addresses A400h through
A7FFh to the second bank, addresses A800h through ABFFh to the third
bank, and addresses AC00h through AFFFh to the fourth bank.

It’s common to wire a 4-KB memory board so that you can flexibly specify
at a later time what range of addresses it responds to. To achieve this flex-
ibility, you use something called a DIP switch. This is a series of tiny switches
(anywhere from 2 through 12) in a dual inline package (DIP) that can be
inserted in a normal IC socket:

You can wire this switch with the high 4 address bits from the bus in a cir-
cuit called a comparator.

Get on the Bus 307

A12

A13

A14

A15

Equal

V

As you’ll recall, the output of an XOR gate is 1 if either of the two in-
puts is 1 but not both. Another way to think of this is that the output of an
XOR gate is 0 if the two inputs are the same—either both 0 or both 1.

For example, if we close the switches corresponding to A13 and A15, that
means we want the memory board to respond to memory addresses A000h
through AFFFh. When the address signals A12, A13, A14, and A15 from the bus
are equal to the values set on the switches, the outputs of all four XOR gates
are 0, which means the output from the NOR gate is 1:

Equal

V

A12

A13

A14

A15

308 Chapter Twenty-One

You can then combine that Equal signal with a 2-Line-to-4-Line Decoder to
generate L signals for each of the four banks of memory:

CS First bank

CS Fourth bank

CS Third bank

CS Second bank

A10
A11

Equal

For example, when A10 is 0 and A11 is 1, that’s the third bank.
If you recall the messy details of combining RAM arrays in Chapter 16,

you might assume that we also need eight 4-to-1 Selectors to select the cor-
rect data output signals from the four banks of memory. But we don’t, and
here’s why.

Normally, the output signals of TTL-compatible integrated circuits are
either greater than 2.2 volts (for a logical 1) or less than 0.4 volts (for a
logical 0). But what happens if you try connecting outputs? If one integrated
circuit has a 1 output and another has a 0 output, and these two outputs are
connected, what will result? You can’t really tell, and that’s why outputs of
integrated circuits aren’t normally connected together.

The data output signal of the 2102 chip is known as a 3-state, or tri-state,
output. Besides a logical 0 and a logical 1, this data output signal can also
be a third state. This state is—lo and behold—nothing at all! It’s as if nothing
is connected to the pin of the chip. The data output signal of the 2102 chip
goes into this third state when the L input is 1. This means that we can
connect the corresponding data output signals of all four banks and use those
eight combined outputs as the eight data input signals of the bus.

I’m emphasizing the concept of the tri-state output because it’s essential
to the operation of a bus. Just about everything that’s connected to the bus
uses the data input signals of the bus. At any time, only one board connected
to the bus should be determining what those data input signals are. The other
boards must be connected to the bus with deselected tri-state outputs.

The 2102 chip is known as static random access memory, or SRAM
(pronounced ess ram), to differentiate it from dynamic random access memory,
or DRAM (pronounced dee ram). SRAM generally requires 4 transistors per
bit of memory (not quite as many transistors as the flip-flops I used for
memory in Chapter 16). DRAM, however, requires only 1 transistor per bit.
The drawback of DRAM is that it requires more complex support circuitry.

An SRAM chip such as the 2102 will retain its contents as long as the chip
has power. If the power goes off, the chip loses its contents. The DRAM is

Get on the Bus 309

also similar in that respect, but a DRAM chip requires also that the contents
of the memory be periodically accessed, even if the contents aren’t needed.
This is called a refresh cycle, and it must occur several hundred times per
second. It’s like periodically nudging someone so that the person doesn’t fall
asleep.

Despite the hassle of using DRAM, the ever-increasing capacity of DRAM
chips over the years has made DRAM the standard. In 1975, Intel introduced
a DRAM chip that stored 16,384 bits. In accordance with Moore’s Law,
DRAM chips have quadrupled in capacity roughly every three years. Today’s
computers usually have sockets for memory right on the system board. The
sockets take small boards called single inline memory modules (SIMMs) or
dual inline memory modules (DIMMs) that contain several DRAM chips.
Today you can buy a DIMM containing 128 megabytes of memory for
under $300.

Now that you know how to make memory boards, you don’t want to fill
up the entire memory space of your microprocessor with memory. You want
to leave some memory space for your output device.

The cathode-ray tube (CRT)—a familiar sight in homes for the last half
century in its guise as the television set—has become the most common
output device for computers. A CRT attached to a computer is usually known
as the video display, or monitor. The electronic components that provide the
signal to the video display are usually known as the video display adapter.
Often the video display adapter occupies its own board in the computer,
which is known as the video board.

While the two-dimensional image of a video display or a television might
seem complex, the image is actually composed of a single continuous beam
of light that sweeps across the screen very rapidly. The beam begins in the
upper left corner and moves across the screen to the right, whereupon it zips
back to the left to begin the second line. Each horizontal line is known as a
scan line. The movement back to the beginning of each of these lines is known
as the horizontal retrace. When the beam finishes the bottom line, it zips from
the lower right corner of the screen to the upper left corner (the vertical re-
trace) and the process begins again. For American television signals, this
happens 60 times a second, which is known as the field rate. It’s fast enough
so that the image doesn’t appear to be flickering.

Television is complicated somewhat by the use of an interlaced display.
Two fields are required to make up a single frame, which is a complete still
video image. Each field contributes half the scan lines of the entire frame—
the first field has the even scan lines, and the second field has the odd scan
lines. The horizontal scan rate, which is the rate at which each horizontal
scan line is drawn, is 15,750 Hertz. If you divide that number by 60 Hertz,
you get 262.5 lines. That’s the number of scan lines in one field. An entire
frame is double that, or 525 scan lines.

Regardless of the mechanics of interlaced displays, the continuous beam
of light that makes up the video image is controlled by a single continuous
signal. Although the audio and video components of a television program

310 Chapter Twenty-One

are combined when they’re broadcast or transmitted through a cable tele-
vision system, they’re eventually separated. The video signal that I’ll describe
here is identical to the signal that’s input to or output from those jacks la-
beled Video found on VCRs, camcorders, and some television sets.

For black and white television, this video signal is quite straightforward
and easy to comprehend. (Color gets a bit messier.) Sixty times per second,
the signal contains a vertical sync pulse that indicates the beginning of a field.
This pulse is 0 volts (ground) for about 400 microseconds. A horizontal sync
pulse indicates the beginning of each scan line: The video signal is 0 volts
for 5 microseconds 15,750 times per second. Between the horizontal sync
pulses, the signal varies from 0.5 volt for black to 2 volts for white, with
voltages between 0.5 volt and 2 volts to indicate shades of gray.

The image of a television is thus partially digital and partially analog. The
image is divided into 525 lines vertically, but each scan line is a continuous
variation of voltages—an analog of the visual intensity of the image. But the
voltage can’t vary indiscriminately. There’s an upper limit to how quickly
the television set can respond to the varying signal. This is known as the
television’s bandwidth.

Bandwidth is an extremely important concept in communication, and it
relates to the amount of information that can be transferred over a particular
communication medium. In the case of television, bandwidth is the limit to
the speed with which the video signal can change from black to white and
back to black again. For American broadcast television, this is about 4.2 MHz.

If we want to connect a video display to a computer, it’s awkward to think
of the display as a hybrid analog and digital device. It’s easier to treat it as
a completely digital device. From the perspective of a computer, it’s most
convenient to conceive of the video image as being divided into a rectangu-
lar grid of discrete dots known as pixels. (The term comes from the phrase
picture element.)

The video bandwidth enforces a limit to the number of pixels that can fit
in a horizontal scan line. I defined the bandwidth as the speed with which
the video signal can change from black to white and back to black again. A
bandwidth of 4.2 MHz for television sets allows two pixels 4.2 million times
a second, or—dividing 2 × 4,200,000 by the horizontal scan rate of 15,750—
533 pixels in each horizontal scan line. But about a third of these pixels aren’t
available because they’re hidden from view—either at the far ends of the
image or while the light beam is in the horizontal retrace. That leaves about
320 useful pixels horizontally.

Likewise, we don’t get 525 pixels vertically. Instead, some are lost at the
top and bottom of the screen and during the vertical retrace. Also, it’s most
convenient to not rely upon interlace when computers use television sets. A
reasonable number of pixels in the vertical dimension is 200.

We can thus say that the resolution of a primitive video display adapter
attached to a conventional television set is 320 pixels across by 200 pixels
down, or 320 pixels horizontally by 200 pixels vertically, commonly referred
to as 320 by 200 or 320 × 200:

Get on the Bus 311

To determine the total number of pixels in this grid, you can count them or
simply multiply 320 by 200 to get 64,000 pixels. Depending on how you’ve
configured your video adapter (as I’ll explain shortly), each pixel can be either
black or white, or each pixel can be a particular color.

Suppose we wanted to display some text on this display. How much can
we fit?

Well, that obviously depends on how many pixels are used for each text
character. Here’s one possible approach that uses an 8 × 8 grid (64 pixels)
for each character:

These are the characters corresponding to ASCII codes 20h through 7Fh. (No
visible characters are associated with ASCII codes 00h through 1Fh.)

312 Chapter Twenty-One

Each character is identified by a 7-bit ASCII code, but each character is
also associated with 64 bits that determine the visual appearance of the
character. You can also think of these 64 bits of information as codes.

Using these character definitions, you can fit 25 lines of 40 characters each
on the 320 × 200 video display, which (for example) is enough to fit an entire
short poem by Amy Lowell:

A video display adapter must contain some RAM to store the contents
of the display, and the microprocessor must be able to write data into this
RAM to change the display’s appearance. Most conveniently, this RAM is
part of the microprocessor’s normal memory space. How much RAM is
required for a display adapter like the one I’m describing?

This isn’t a simple question! The possible answers can range from 1 ki-
lobyte to 192 kilobytes!

Let’s start with the low estimate. One way to reduce the memory require-
ments of a video display adapter is to restrict the adapter to text only. We’ve
already established that we can display 25 rows of 40 characters each, or a
total of 1000 characters. The RAM on the video board need only store the
7-bit ASCII codes of those 1000 characters. That’s 1000 7-bit values, which
is approximately 1024 bytes, or 1 kilobyte.

Such a video adapter board must also include a character generator that
contains the pixel patterns of all the ASCII characters, such as I illustrated
earlier. This character generator is generally read-only memory, or ROM
(pronounced rahm). A ROM is an integrated circuit manufactured so that
a particular address always results in a particular data output. Unlike RAM,
a ROM doesn’t have any data input signals.

You can think of ROM as a circuit that converts one code to another. A
ROM that stores 8 × 8 pixel patterns of 128 ASCII characters could have 7
address signals (for the ASCII codes) and 64 data output signals. The ROM
thus converts a 7-bit ASCII code to a 64-bit code that defines the character’s

Get on the Bus 313

appearance. But 64 data output signals would make the chip quite large! It’s
more convenient to have 10 address signals and 8 output signals. Seven of
the address signals specify the particular ASCII character. (These 7 address
bits come from the data output of the RAM on the video board.) The other
3 address signals indicate the row. For example, address bits 000 indicate
the top row and 111 indicate the bottom row. The 8 output bits are the eight
pixels of each row.

For example, suppose the ASCII code is 41h. That’s a capital A. There
are eight rows of 8 bits each. This table shows the 10-bit address (a space
separates the ASCII code from the row code) and the data output signals for
a capital A:

Address Data Output
1000001 000 00110000
1000001 001 01111000
1000001 010 11001100
1000001 011 11001100
1000001 100 11111100
1000001 101 11001100
1000001 110 11001100
1000001 111 00000000

Do you see the A drawn with 1s against a background of 0s?
A video display adapter that displays text only must also have logic for

a cursor. The cursor is the little underline that indicates where the next char-
acter you type on the keyboard will appear on the display. The character row
and column position of the cursor is usually stored in two 8-bit registers on
the video board that the microprocessor can write values into.

If the video adapter board is not restricted to text only, it’s referred to
as a graphics board. By writing into the RAM on a graphics video board,
a microprocessor can draw pictures, including text in a multitude of sizes
and styles. Graphics video boards require more memory than text-only
boards. A graphics video board that displays 320 pixels across by 200 pix-
els down has 64,000 pixels. If each pixel corresponds to one bit of RAM,
such a board requires 64,000 bits of RAM, or 8000 bytes. This, however,
is the rock-bottom minimum. A correspondence of 1 bit to 1 pixel allows
the use of only two colors—for instance, black and white. A 0 bit might
correspond to a black pixel, and a 1 bit might correspond to a white pixel.

Black-and-white televisions display more than just black and white, of
course. They’re also capable of displaying many shades of gray. To display
shades of gray from a graphics board, it’s common for each pixel to corre-
spond to an entire byte of RAM, where 00h is black and FFh is white, and
all the values in between correspond to shades of gray. A 320-by-200 video
board that displays 256 gray shades requires 64,000 bytes of RAM. That’s
very nearly the entire address space of one of the 8-bit microprocessors I’ve
been talking about!

Moving up to full gorgeous color requires 3 bytes per pixel. If you use a
magnifying glass to examine a color television or a computer video display,

314 Chapter Twenty-One

you’ll discover that each color is represented by various combinations of the
primary colors red, green, and blue. To get the full range of color, a byte is
required to indicate the intensity of each of the three primaries. That means
192,000 bytes of RAM. (I’ll have more to say about color graphics in the
last chapter of this book.)

The number of different colors that a video adapter is capable of is related
to the number of bits used for each pixel. The relationship might look famil-
iar because like many codes in this book, it once again involves a power of 2:

Number of Colors = 2Number of bits per pixel

The 320-by-200 resolution is just about the best you can do on a standard
television set. That’s why monitors made specifically for computers have a
much higher bandwidth than television sets. The first monitors sold with the
IBM Personal Computer in 1981 could display 25 lines of 80 characters each.
This is the number of characters found on the CRT displays used with IBM’s
large and expensive mainframe computers. To IBM, 80 characters is a very
special number. And why? Because that’s the number of characters on an IBM
punch card! Indeed, in the early days the CRT displays attached to mainframes
were often used for viewing the contents of punch cards. Occasionally, you’ll
hear an old-timer refer to the lines of a text-only video display as cards.

Over the years, video display adapters have been characterized by increas-
ing resolution and color capability. An important milestone was reached in
1987 when IBM’s Personal System/2 series of personal computers and Apple’s
Macintosh II both introduced video adapters that did 640 pixels horizon-
tally by 480 pixels vertically. This has remained the minimum-standard video
resolution ever since.

The 640-by-480 resolution was a significant milestone, but you might not
believe that the reason for its importance goes back to Thomas Edison! Around
1889, when Edison and his engineer William Kennedy Laurie Dickson were
working on the Kinetograph motion picture camera and the Kinetoscope
projector, they decided to make the motion picture image one-third wider
than it was high. The ratio of the width of the image to its height is called the
aspect ratio. The ratio that Edison and Dickson established is commonly ex-
pressed as 1.33 to 1, or 1.33:1, or, to avoid fractions, 4:3. This aspect ratio
was used for most movies for over 60 years, and it was also used for televi-
sion. Only in the early 1950s did the Hollywood studios introduce some wide-
screen techniques that competed against television by going beyond the 4:3
aspect ratio.

The aspect ratio of most computer monitors is (like television) also 4:3,
which you can easily prove to yourself using a ruler. The resolution 640 by
480 is also in the ratio 4:3. This means that (for example) a 100-pixel hori-
zontal line is the same physical length as a 100-pixel vertical line. This is
considered a desirable feature for computer graphics and is known as square
pixels.

Today’s video adapters and monitors almost always do 640 by 480 but
are also capable of various additional video modes, often including resolu-
tions of 800 by 600, 1024 by 768, 1280 by 960, and 1600 by 1200.

Get on the Bus 315

Although we normally think of the computer display and the keyboard
as connected in some way—what you type on the keyboard is displayed on
the screen—they’re usually physically distinct.

Each key on the keyboard is a simple switch. The switch is closed when
the key is pressed. A keyboard that resembles a typewriter might have as few
as 48 keys; keyboards for today’s personal computers often have over 100 keys.

A keyboard attached to a computer must include some hardware that
provides a unique code for each key that’s pressed. It’s tempting to assume
that this code is the ASCII code for the key. But it’s not practical nor desir-
able to design hardware that figures out the ASCII code. For example, the
A key on the keyboard could correspond to the ASCII code 41h or 61h
depending on whether a user also pressed the Shift key. Also, today’s com-
puter keyboards have many keys that don’t correspond to ASCII characters.
The code provided by the keyboard hardware is instead referred to as a scan
code. A short computer program can figure out what ASCII code (if any) cor-
responds to a particular key being pressed on the keyboard.

To prevent my diagram of the keyboard hardware from becoming un-
wieldy, I’m going to assume that our keyboard has a mere 16 keys. When-
ever a key is pressed, the keyboard hardware should generate a 4-bit code
with binary values ranging from 0000 through 1111.

The keyboard hardware contains components that we’ve seen before:

V

4-Bit
CounterOscillator

2-to-4 Decoder

O0

DI

O1 O2 O3

1-of-4
Selector

I0

I1

I2

I3

S1

S0

Q0 Q1 Q2 Q3

Clk

S0 S1

DO

316 Chapter Twenty-One

The 16 keys of the keyboard are shown as simple switches in the lower left
area of this diagram. A 4-bit counter repetitively and very quickly cycles
through the 16 codes corresponding to the keys. It must be fast enough to
cycle through all the codes faster than a person can press and release a key.

The outputs of the 4-bit counter are the select inputs of both a 2-Line-to-
4-Line Decoder and a 4-Line-to-1-Line Data Selector. If no keys are pressed,
none of the inputs to the selector can be 1. Therefore the output of the se-
lector isn’t 1. But if a particular key is pressed, at a particular 4-bit counter
output the output from the selector will be 1. For example, if the switch
second from the top and right is pressed, and if the counter output is 0110,
the output from the selector becomes 1:

V

Oscillator

Interrupt

2-to-4 Decoder

O0

DI

O1 O2 O3
S1

S0

4-Bit
Counter

Q0 Q1 Q2 Q3

Clk

1-of-4
Selector

I0

I1

I2

I3

S0 S1

DO

Clk

4-Bit
Latch

D0

D1

D2

D3

Q0

Q1

Q2

Q3

That’s the code corresponding to that key. When that key is pressed, no other
counter output will cause the output of the selector to be 1. Each key has
its own code.

If your keyboard has 64 keys, you need a 6-bit scan code. That would
involve a 6-bit counter. You could arrange the keys in an 8×8 array, using a
3-to-8 Decoder and a 1-of-8 Selector. If your keyboard has between 65 and
128 keys, you need a 7-bit code. You could arrange the keys in an 8×16 array
and use a 4-to-16 Decoder and an 8-to-1 Selector (or a 3-to-8 Decoder and
a 16-to-1 Selector).

Get on the Bus 317

What happens next in this circuit depends on the sophistication of the
keyboard interface. The keyboard hardware could include 1 bit of RAM for
each key. The RAM would be addressed by the counter, and the contents of
the RAM could be 0 if the key is up and 1 if the key is down. This RAM
could also be read by the microprocessor to determine the status of each key.

One useful part of a keyboard interface is an interrupt signal. As you’ll
recall, the 8080 microprocessor has an input signal that allows an external
device to interrupt what the microprocessor is doing. The microprocessor
responds by reading an instruction from memory. This is usually a RST
instruction and causes the microprocessor to branch to a specific area of
memory where a program to handle the interrupt is located.

The final peripheral I’ll describe in this chapter is a long-term storage
device. As you’ll recall, random access memory—whether constructed from
relays, tubes, or transistors—loses its contents when the electrical power is
shut off. For this reason, a complete computer also needs something for long-
term storage. One time-honored approach involves punching holes in pa-
per or cardboard, such as IBM punch cards. In the early days of small
computers, rolls of paper tape were punched with holes to save programs
and data and to later reload them into memory.

One problem with punch cards and paper tape is that the medium isn’t
reusable. Once a hole is punched it can’t easily be unpunched. Another prob-
lem is that it’s not particularly efficient. These days, if you can actually see
a bit, it’s probably safe to say that the bit is taking up entirely too much space!

For these reasons, the type of long-term storage that has become much
more prevalent is magnetic storage. The origins of magnetic storage date
back to 1878, when the principles were described by American engineer
Oberlin Smith (1840–1926). The first working device, however, came 20
years later in 1898 and was built by Danish inventor Valdemar Poulsen
(1869–1942). Poulsen’s telegraphone was originally intended as a device to
record telephone messages when the person receiving the call wasn’t at home.
He employed an electromagnet—that ubiquitous device we’ve already en-
countered in the telegraph—to record sound along a moving length of steel
wire. The electromagnet magnetizes the wire proportional to the ups and
downs of the waveform of the sound. The magnetized wire can then induce
a current to the same degree as it’s moved along the coils of wire in the elec-
tromagnet. The electromagnet used for storing and reading is known as a
head, regardless of the type of magnetic medium it’s used with.

In 1928, Austrian inventor Fritz Pfleumer patented a magnetic recording
device based on long lengths of paper tape that had been coated with iron
particles using a technology originally designed for creating metallic bands
on cigarettes. The paper was soon replaced with a stronger cellulose acetate
base, and one of the most enduring and well-known of all recording media
was born. Reels of magnetic tape—now conveniently packaged in plastic
cassettes—still provide an extremely popular medium for recording and
playing back music and video.

The first commercial tape system for recording digital computer data was
introduced by Remington Rand in 1950. At the time, a reel of half-inch tape

318 Chapter Twenty-One

could store a few megabytes of data. In the early days of home computers,
people adapted common cassette tape recorders to save information. Small
programs stored the contents of a block of memory to tape and later read
it back from tape into memory. The first IBM PCs had a connector for cas-
sette tape storage. Tape remains a popular medium today, particularly for
long-term archiving. Tape, however, isn’t an ideal medium because moving
quickly to an arbitrary spot on the tape isn’t possible. It’s usually necessary
to fast-forward or rewind, and that takes time.

A medium geometrically more conducive to fast access is the disk. The
disk itself is spun around its center while one or more heads attached to arms
can be moved from the outside of the disk to the inside. Any area on the disk
can be accessed very quickly.

For recording sounds, the magnetic disk actually predates the magnetic
tape. For storing computer data, however, the first disk drive was invented
at IBM in 1956. The Random Access Method of Accounting and Control
(RAMAC) contained 50 metal disks 2 feet in diameter and could store 5
megabytes of data.

Since then, disks have become much smaller and of higher capacity. Disks
are generally categorized as floppy disks (also called diskettes) or hard disks
(also called fixed disks). Floppy disks are single sheets of coated plastic in-
side a protective casing made of cardboard or (more recently) plastic. (A
plastic casing prevents the diskette from bending, so the diskette is no longer
quite as floppy as the older ones, but it’s still referred to as a floppy disk.)
Floppy disks must be physically inserted by a person into a floppy disk drive,
which is the component attached to the computer that writes to and reads
from the floppy disk. Early floppy disks were 8 inches in diameter. The first
IBM PC used 5 1⁄4-inch floppy disks; today the most common format is 3.5
inches in diameter. That floppy disks can be removed from the disk drive
allows them to be used for transferring data from one computer to another.
Diskettes are also still an important distribution medium of commercial
software.

A hard disk usually contains multiple metal disks permanently built into
the drive. Hard disks are generally faster than floppy disks and can store
more data. But the disks themselves can’t be removed.

The surface of a disk is divided into concentric rings called tracks. Each
track is divided like slices of a pie into sectors. Each sector stores a certain
number of bytes, usually 512 bytes. The floppy disk drive on the first IBM
PC used only one side of the 5 1⁄4-inch disk and divided it into 40 tracks with
8 sectors per track and 512 bytes per sector. Each floppy disk thus stored
163,840 bytes, or 160 kilobytes. The 3.5-inch floppy disks used in PC com-
patibles today have two sides, 80 tracks per side, 18 sectors per track, and
512 bytes per sector for a total of 1,474,560 bytes, or 1440 kilobytes.

The first hard disk drive introduced by IBM for the Personal Computer-
XT in 1983 stored ten megabytes. Today, in 1999, a 20-gigabyte hard disk
drive (that’s 20 billion bytes of storage) can be purchased for under $400.

Get on the Bus 319

A floppy disk or hard disk usually comes with its own electrical interface
and also requires an additional interface between that and the microproces-
sor. Several standard interfaces are popular for hard drives, including SCSI
(Small Computer System Interface, pronounced scuzzy), ESDI (Enhanced
Small Device Interface, pronounced ez dee), and IDE (Integrated Device
Electronics). All these interfaces make use of direct memory access (DMA)
to take over the bus and transfer data directly between random access
memory and the disk, bypassing the microprocessor. These transfers are in
increments of the disk sector size, which is usually 512 bytes.

Many newcomers to home computers hear too much technical talk about
megabytes of this and gigabytes of that, and they get confused about the
difference between semiconductor random access memory and disk storage.
In recent years, a rule of sorts has emerged to help alleviate some confusion
about terminology. The rule is that the word memory is to be used to refer
only to semiconductor random access memory, while the word storage is to
be used for everything else—usually floppy disks, hard disks, and tape. I’ve
tried to follow that rule (even though we’ve encountered microprocessor
machine-code instructions named Store that store bytes in RAM).

The most obvious difference between memory and storage is that memory
is volatile; it loses its contents when the power is shut off. Storage is non-
volatile; data stays on the floppy disk or hard disk until it’s deliberately
erased or written over. Yet there’s another significant difference that you
can appreciate only by understanding what a microprocessor does. When
the microprocessor outputs an address signal, it’s always addressing memory,
not storage.

Getting something from disk storage into memory so that it can be ac-
cessed by the microprocessor requires extra steps. It requires that the micro-
processor run a short program that accesses the disk drive so that the disk
drive transfers data from the disk into memory.

The difference between memory and storage can also be understood in a
common analogy: Memory is like the top of your desk. Anything that’s on
your desk you can work with directly. Storage is like a file cabinet. If you
need to use something from the file cabinet, you have to get up, walk over
to the file cabinet, pull out the file you need, and bring it back to your desk.
If your desk gets too crowded, you need to take something from your desk
back over to the file cabinet.

This analogy is particularly apt because data stored on disks is actually
stored in entities called files. Storing files and retrieving them is the prov-
ince of an extremely important piece of software known as the operating
system.

320

Chapter Twenty-Two

The Operating
System

e have, at long last, assembled—at least in our imaginations—
what seems to be a complete computer. This computer has a mi-
croprocessor, some random access memory, a keyboard, a video

display, and a disk drive. All the hardware is in place, and we eye with ex-
citement the on/off switch that will power it up and bring it to life. Perhaps
this project has evoked in your mind the labors of Victor Frankenstein as
he assembled his monster, or Geppetto as he built the wooden puppet that
he will name Pinocchio.

But still we’re missing something, and it’s neither the power of a light-
ning bolt nor the purity of a wish upon a star. Go ahead: Turn on this new
computer and tell me what you see.

As the cathode-ray tube warms up, the screen displays an array of per-
fectly formed—but totally random—ASCII characters. This is as we expect.
Semiconductor memory loses its contents when the power is off and be-
gins in a random and unpredictable state when it first gets power. Likewise,
all the RAM that we’ve constructed for the microprocessor contains random
bytes. The microprocessor begins executing these random bytes as if they
were machine code. This won’t cause anything bad to happen—the computer
won’t blow up, for instance—but it won’t be very productive either.

What we’re missing here is software. When a microprocessor is first turned
on or reset, it begins executing machine code at a particular memory address.
In the case of the Intel 8080, that address is 0000h. In a properly designed
computer, that memory address should contain a machine-code instruction
(most likely the first of many) when the computer is turned on.

W

The Operating System 321

How does that machine-code instruction get there? The process of get-
ting software into a newly designed computer is possibly one of the most con-
fusing aspects of the project. One way to do it is with a control panel similar
to the one in Chapter 16 used for writing bytes into random access memory
and later reading them:

1

0

1

0

Control Panel

Reset Takeover

1

0

Write

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

D7 D6 D5 D4 D3 D2 D1 D0

Unlike the earlier control panel, this one has a switch labeled Reset. The
Reset switch is connected to the Reset input of the microprocessor. As long
as that switch is on, the microprocessor doesn’t do anything. When you turn
off the switch, the microprocessor begins executing machine code.

To use this control panel, you turn the Reset switch on to reset the mi-
croprocessor and to stop it from executing machine code. You turn on the
Takeover switch to take over the address signals and data signals on the bus.
At this time, you can use the switches labeled A0 through A15 to specify a
16-bit memory address. The lightbulbs labeled D0 through D7 show you the
8-bit contents of that memory address. To write a new byte into that address,
you set the byte up on switches D0 through D7 and flip the Write switch on
and then off again. After you’re finished inserting bytes into memory, turn
the Takeover switch off and the Reset switch off, and the microprocessor
will execute the program.

This is how you enter your first machine-code programs into a computer
that you’ve just built from scratch. That it’s laborious goes without saying.
That you will make little mistakes now and then is a given. That your fin-
gers will get blisters and your brain will turn to mush is an occupational
hazard.

But what makes it all worthwhile happens when you start to use the video
display to show the results of your programs. The text-only video display
we built in the last chapter has 1 kilobyte of random access memory that’s
used to store the ASCII codes of 25 lines of 40 characters each. A program
writes to this memory the same way that it writes to any other memory in
the computer.

But getting program output to the video display isn’t as simple as it might
first seem. If, for example, a program that you write does a particular cal-
culation that results in the value 4Bh, you can’t simply write that value to
the video display memory. What you’ll see in the screen in that case is the

322 Chapter Twenty-Two

letter K because that’s the letter that corresponds to the ASCII code 4Bh. In-
stead, you need to write two ASCII characters to the display: 34h, which is
the ASCII code for 4, and 42h, which is the ASCII code for B. Each nibble
of the 8-bit result is a hexadecimal digit, which must be displayed by the
ASCII code for that digit.

Of course, you’ll probably write little subroutines that perform this con-
version. Here’s one in 8080 assembly language that converts a nibble in the
accumulator (assumed to be a value between 00h and 0Fh inclusive) to its
ASCII equivalent:

NibbleToAscii: CPI A,0Ah ; Check if it’s a letter or number
 JC Number
 ADD A,37h ; A to F converted to 41h to 46h
 RET
Number: ADD A,30h ; 0 to 9 converted to 30h to 39h
 RET

This subroutine calls NibbleToAscii twice to convert a byte in accumulator
A to two ASCII digits in registers B and C:

ByteToAscii: PUSH PSW ; Save accumulator
 RRC ; Rotate A right 4 times...
 RRC
 RRC
 RRC ; ...to get high-order nibble
 CALL NibbleToAscii ; Convert to ASCII code
 MOV B,A ; Move result to register B
 POP PSW ; Get original A back
 AND A,0Fh ; Get low-order nibble
 CALL NibbleToAscii ; Convert to ASCII code
 MOV C,A ; Move result to register C
 RET

These subroutines now let you display a byte in hexadecimal on the video
display. If you want to convert to decimal, it’s a bit more work. The process
is actually quite similar to the way a person converts hexadecimal to decimal—
by several divisions by 10.

Remember that you’re not actually entering these assembly-language
programs into memory. Instead, you’re probably writing them on paper and
then converting them to machine code that you then enter into memory. This
“hand assembling” is something that we’ll continue doing until Chapter 24.

Although the control panel doesn’t require a lot of hardware, what it also
lacks is ease of use. The control panel has to be the absolute worst form of
input and output ever devised. It’s downright embarrassing that we’re clever
enough to build our own computer from scratch, yet we’re still keying in
numbers in 0s and 1s. The first priority has to be to get rid of the control
panel.

The key, of course, is the keyboard. We’ve constructed the computer
keyboard so that every time a key is pressed, an interrupt to the micro-
processor occurs. The interrupt controller chip that we’ve used in our

The Operating System 323

computer causes the microprocessor to respond to this interrupt by execut-
ing a RST (Restart) instruction. Let’s suppose that this is a RST 1 instruc-
tion. This instruction causes the microprocessor to save the current program
counter on the stack and to jump to address 0008h. Beginning at that ad-
dress, you’ll enter some code (using the control panel) that we’ll call the
keyboard handler.

To get this all working right, you’ll need some code that’s executed when
the microprocessor is reset. This is called initialization code. The initializa-
tion code first sets the stack pointer so that the stack is located in a valid
area of memory. The code then sets every byte in the video display memory
to the hexadecimal value 20h, which is the ASCII space character. This pro-
cedure gets rid of all the random characters on the screen. The initialization
code uses the OUT (Output) instruction to set the position of the cursor—
the underline on the video display that shows you where the next character
you type will be entered—to the first column of the first row. The next in-
struction is EI to enable interrupts so that the microprocessor can respond
to the keyboard interrupt. That instruction is followed by a HLT to halt the
microprocessor.

And that’s it for the initialization code. From now on, the computer will
mostly be in a halted state resulting from executing the HLT instruction. The
only event that can nudge the computer from the halted state is a Reset from
the control panel or an interrupt from the keyboard.

The keyboard handler is much longer than the initialization code. Here’s
where all the really useful stuff takes place.

Whenever a key is pressed on the keyboard, the interrupt signal causes
the microprocessor to jump from the HLT statement at the end of the ini-
tialization code to the keyboard handler. The keyboard handler uses the IN
(Input) instruction to determine the key that has been pressed. The key-
board handler then does something based on which key has been pressed
(that is, the keyboard handler processes each key) and then executes a RET
(Return) instruction to go back to the HLT statement to await another
keyboard interrupt.

If the pressed key is a letter or a number or a punctuation mark, the key-
board handler uses the keyboard scan code, taking into account whether the
Shift key is up or down, to determine the appropriate ASCII code. It then
writes this ASCII code into the video display memory at the cursor position.
This procedure is called echoing the key to the display. The cursor position
is then incremented so that the cursor appears in the space after the char-
acter just displayed. In this way, someone can type a bunch of characters on
the keyboard and they’ll be displayed on the screen.

If the key pressed is the Backspace key (corresponding to ASCII code 08h),
the keyboard handler erases the character that was last written to the video
display memory. (Erasing the character is simply a matter of writing ASCII
code 20h—the space character—in that memory location.) It then moves the
cursor backward one space.

Usually a person typing at the keyboard types in a line of characters—
using the Backspace key when necessary to correct mistakes—and then

324 Chapter Twenty-Two

presses the Return key, often labeled Enter on computer keyboards. In the
same way that pressing the Return key on an electric typewriter indicates
that the typist is ready to go to the beginning of the next line, pressing the
Enter key indicates that the typist is finished typing a line of text.

When the keyboard handler processes the Return or Enter key (corre-
sponding to ASCII code 0Dh), the line of text in the video display memory
is interpreted as a command to the computer, that is, something for the
keyboard handler to do. The keyboard handler includes a command proces-
sor that understands (for example) three commands: W, D, and R.

If the line of text begins with a W, the command means Write some bytes
into memory. The line you type on the screen looks something like this:

W 1020 35 4F 78 23 9B AC 67

This command instructs the command processor to write the hexadecimal
bytes 35, 4F, and so on into the memory addresses beginning at address
1020h. For this job, the keyboard handler needs to convert ASCII codes to
bytes—a reversal of the conversion I demonstrated earlier.

If the line of text begins with a D, the command means Display some bytes
in memory. The line you type on the screen looks like this:

D 1030

The command processor responds by displaying the 11 bytes stored begin-
ning at location 1030h. (I say 11 bytes because that’s how many will fit on
a 40-character-wide display on the same line following the address.) You can
use the Display command to examine the contents of memory.

If the line of text begins with an R, the command means Run. Such a
command looks like this:

R 1000

and means “Run the program that’s stored beginning at address 1000h.” The
command processor stores 1000h in the register pair HL and then executes
the instruction PCHL, which loads the program counter from register pair
HL, effectively jumping to that address.

Getting this keyboard handler and command processor working is an
important milestone. Once you have it, you no longer need suffer the indig-
nity of the control panel. Typing bytes in from the keyboard is easier, faster,
and classier.

Of course, you still have the problem of all the code you’ve entered dis-
appearing when you turn off the power. For that reason, you’ll probably want
to store all this new code in read-only memory, or ROM. In the last chap-
ter, we obtained a ROM chip that contained all the dot patterns necessary
for displaying ASCII characters on the video display. We assumed our chip
was configured with this data during manufacture. You can also program
ROM chips in the privacy of your home. Programmable read-only memory
(PROM) chips are programmable only once. Erasable programmable read-
only memory (EPROM) chips can be programmed and reprogrammed af-
ter being entirely erased by exposure to ultraviolet light.

The Operating System 325

As you’ll recall, we wired our RAM boards with a DIP switch that allows
us to specify the starting address of the board. If you’re working with an 8080
system, initially one of your RAM boards will be set for address 0000h. After
you create a ROM, that ROM will occupy address 0000h and the RAM
board can be switched to a higher address.

The creation of the command processor is an important milestone not only
because it provides a faster means to enter bytes into memory but also be-
cause the computer is now interactive. When you type something on the
keyboard, the computer responds by displaying something on the screen.

Once you have the command processor in ROM, you can start experi-
menting with writing data from memory to the disk drive (probably in
chunks that correspond to the sector size of the disk) and reading the data
back into memory. Storing programs and data on the disk is much safer than
storing them in RAM (where they’ll disappear if the power fails) and much
more flexible than storing them in ROM.

Eventually you might want to add some new commands to the command
processor. For example, the S command stands for Store:

S 2080 2 15 3

This command indicates that the block of memory beginning at address
2080h is to be stored on the disk on side 2, track 15, and sector 3. (The size
of this memory block is dependent on the sector size of the disk.) Similarly,
you can add a Load command:

L 2080 2 15 3

to load the sector from the disk back into memory.
Of course, you’ll have to keep track of what you’re storing where. You’ll

probably keep a pad and pencil handy for this purpose. Be careful: You can’t
just store some code located at one address and then later load it back into
memory at another address and expect it to work. All the Jump and Call
instructions will be wrong because they indicate the old addresses. Also, you
might have a program that’s longer than the sector size of your disk, so you
need to store it in several sectors. Because some sectors on the disk might be
occupied by other programs or data and some sectors might be free, the sec-
tors in which you store a long program might not be consecutive on the disk.

Eventually, you could decide that the manual clerical work involved in
keeping track of where everything is stored on the disk is just too much. At
this point, you’re ready for a file system.

A file system is a method of disk storage in which data is organized into
files. A file is simply a collection of related data that occupies one or more
sectors on the disk. Most important, each file is identified by a name that
helps you remember what the file contains. You can think of the disk as
resembling a file cabinet in which each file has a little tab that indicates the
name of the file.

A file system is almost always part of a larger collection of software known
as an operating system. The keyboard handler and command processor we’ve

326 Chapter Twenty-Two

been building in this chapter could certainly evolve into an operating sys-
tem. But instead of trudging through that long evolutionary process, let’s take
a look instead at a real operating system and get a feel for what it does and
how it works.

Historically, the most important operating system for 8-bit micropro-
cessors was CP/M (Control Program for Micros), written in the mid-1970s
for the Intel 8080 microprocessor by Gary Kildall (born 1942), who later
founded Digital Research Incorporated (DRI).

CP/M is stored on a disk. In the early days of CP/M, the most common
medium for CP/M was a single-sided 8-inch diskette with 77 tracks, 26
sectors per track, and 128 bytes per sector. (That’s a total of 256,256 bytes.)
The first two tracks of the disk contain CP/M itself. I’ll describe shortly how
CP/M gets from the disk into the computer memory.

The remaining 75 tracks on the CP/M disk are used for storing files. The
CP/M file system is fairly simple, but it satisfies the two major requirements:
First, each file on the disk is identified by a name. This name is also stored
on the disk; indeed, all the information that CP/M needs to read these files
is stored on the disk along with the files themselves. Second, files don’t have
to occupy consecutive sectors on a disk. It often happens that as files of
various sizes are created and deleted, free space on the disk becomes frag-
mented. The ability of a file system to store a large file in nonconsecutive
sectors is very useful.

The sectors in the 75 tracks used for storing files are grouped into allo-
cation blocks. Each allocation block contains 8 sectors, or 1024 bytes. There
are 243 allocation blocks on the disk, numbered 0 through 242.

The first two allocation blocks (a total of 2048 bytes) are used for the
directory. The directory is the area of the disk that contains the names and
some crucial information about every file stored on the disk. Each file stored
on the disk requires a directory entry 32 bytes long. Because the total direc-
tory is just 2048 bytes, the diskette is limited to 2048 ÷ 32, or 64, files.

Each 32-byte directory entry contains the following information:

Bytes Meaning
0 Usually set to 0

1–8 Filename
9–11 File type
12 File extent

13–14 Reserved (set to 0)
15 Sectors in last block

16–31 Disk map

The first byte in the directory entry is used only when the file system can be
shared by two or more people at the same time. Under CP/M, this byte is
normally set to 0, as are bytes 13 and 14.

Under CP/M, each file is identified with a two-part name. The first part
is known as the filename and can have up to eight characters stored in bytes
1 through 8 of the directory entry; the second part is known as the file type

The Operating System 327

and can have up to three characters stored in bytes 9 through 11. There are
several standard file types. For example, TXT indicates a text file (that is,
a file containing only ASCII codes), and COM (which is short for command)
indicates a file containing 8080 machine-code instructions—a program.
When specifying a file, the two parts are separated by a period, like this:

MYLETTER.TXT
CALC.COM

This file-naming convention has come to be known as 8.3 (pronounced eight
dot three), indicating the maximum eight letters before the period and the
three letters after.

The disk map of the directory entry indicates the allocation blocks in
which the file is stored. Suppose the first four entries in the disk map are 14h,
15h, 07h, and 23h, and the rest are zeros. This means that the file occupies
four allocation blocks, or 4 KB of space. The file might actually be a bit
shorter. Byte 15 in the directory entry indicates how many 128-byte sectors
are actually used in the last allocation block.

The disk map is 16 bytes long; that length accommodates a file up to
16,384 bytes. A file longer than 16 KB must use multiple directory entries,
which are called extents. In that case, byte 12 is set to 0 in the first direc-
tory entry, 1 in the second directory entry, and so forth.

I mentioned text files. Text files are also called ASCII files, or text-only
files, or pure-ASCII files, or something along those lines. A text file con-
tains ASCII codes (including carriage return and linefeed codes) that corre-
spond to text readable by human beings. A file that isn’t a text file is called
a binary file. A CP/M COM file is a binary file because it contains 8080
machine code.

Suppose a file (a very small file) must contain three 16-bit numbers—for
example, 5A48h, 78BFh, and F510h. A binary file with these three numbers
is just 6 bytes long:

48 5A BF 78 10 F5

Of course, that’s the Intel format for storing multibyte numbers. The least-
significant byte comes first. A program written for Motorola processors
might be more inclined to create the file this way:

5A 48 78 BF F5 10

An ASCII text file storing these same four 16-bit values contains the bytes

35 41 34 38 68 0D 0A 37 38 42 46 68 0D 0A 46 35 31 30 68 0D 0A

These bytes are ASCII codes for numbers and letters, where each number is
terminated by a carriage return (0Dh) and a linefeed (0A) character. The text
file is more conveniently displayed not as a string of bytes that happen to
be ASCII codes, but as the characters themselves:

5A48h
78BFh
F510h

328 Chapter Twenty-Two

An ASCII text file that stores these three numbers could also contain these
bytes:

32 33 31 31 32 0D 0A 33 30 39 31 31 0D 0A 36 32 37 33 36 0D 0A

These bytes are the ASCII codes for the decimal equivalents of the three
numbers:

23112
30911
62736

Since the intent of using text files is to make the files easier for humans to
read, there’s really no reason not to use decimal rather than hexadecimal
numbers.

As I mentioned, CP/M itself is stored on the first two tracks of a disk. To
run, CP/M must be loaded from the disk into memory. The ROM in a com-
puter that uses CP/M need not be extensive. All the ROM needs to con-
tain is a small piece of code known as a bootstrap loader (because that code
effectively pulls the rest of the operating system up by its bootstraps). The
bootstrap loader loads the very first 128-byte sector from the diskette into
memory and runs it. This sector contains code to load the rest of CP/M into
memory. The entire process is called booting the operating system.

Eventually, CP/M arranges itself to occupy the area of RAM with the
highest memory addresses. The entire organization of memory after CP/M
has loaded looks like this:

System
Parameters

0000h:

Transient
Program

Area (TPA)

Console
Command

Processor (CCP)

Basic Disk
Operating

System (BDOS)

Basic
Input/Output
System (BIOS)

0100h:

Highest Address:

This diagram isn’t to scale. The three components of CP/M—the Basic Input/
Output System (BIOS), the Basic Disk Operating System (BDOS), and the
Console Command Processor (CCP)—occupy only about 6 KB of memory
in total. The Transient Program Area (TPA)—about 58 KB of memory in a
64-KB computer—initially contains nothing.

The Console Command Processor is equivalent to the command proces-
sor that we were building earlier. The word console refers to a combination

The Operating System 329

of a keyboard and a display. The CCP displays a prompt on the display, which
looks like this:

A>

The prompt is your signal to type something in. In computers that have more
than one disk drive, the A refers to the first disk drive, the one from which
CP/M was loaded. You type in commands following the prompt and press
the Enter key. The CCP then executes these commands, which usually pro-
duces information displayed on the screen. When the command has finished,
the CCP displays the prompt again.

The CPP recognizes just a few commands. Possibly the most important
is this one:

DIR

which displays the directory of the disk—that is, a list of all the files stored
on the disk. You can use the special characters ? and * to limit this list to
files of a particular name or type. For example,

DIR *.TXT

displays all text files, while

DIR A???B.*

displays a list of all files that have a five-character name where the first let-
ter is A and the last letter is B.

Another command is ERA, which is short for Erase. You use this to erase
a file from the disk. For example,

ERA MYLETTER.TXT

erases the file with that name, while

ERA *.TXT

erases all text files. Erasing a file means freeing the directory entry and the
disk space occupied by the file.

Another command is REN, which is short for Rename. You use this
command to change the name of a file. The TYPE command displays the
contents of a text file. Because a text file contains only ASCII codes, this com-
mand allows you to read a file right on the screen, like this:

TYPE MYLETTER.TXT

The SAVE command saves one or more 256-byte memory blocks located in
the Transient Program Area to a disk file with a specified name.

If you type in a command that CP/M doesn’t recognize, it assumes you’re
specifying the name of a program that’s stored as a file on the disk. Programs
always have the file type COM, which stands for Command. The CCP
searches for a file of that name on the disk. If one exists, CP/M loads the
file from disk into the Transient Program Area, which begins at memory

330 Chapter Twenty-Two

address 0100h. This is how you run programs that are located on the disk.
For example, if you type

CALC

following the CP/M prompt, and if a file named CALC.COM exists on the
disk, the CCP loads that file into memory starting at address 0100h and then
executes the program by jumping to the machine-code instruction located
at address 0100h.

Earlier I explained how you can insert machine-code instructions any-
where into memory and execute them, but in CP/M programs that are stored
in disk files must be designed to be loaded into memory beginning at a spe-
cific memory location, which is 0100h.

CP/M comes with several useful programs, including PIP, the Peripheral
Interchange Program, which allows you to copy files. The ED program is a
text editor that allows you to create and modify text files. Programs such
as PIP and ED, which are small and designed to do simple chores, are often
known as utility programs. If you were running a CP/M system, you would
probably purchase larger application programs, such as word processors or
computer spreadsheets. Or you might write such programs yourself. All these
programs are also stored in files of the COM type.

So far we’ve seen how CP/M (like most operating systems) provides com-
mands and utilities that let you perform rudimentary housekeeping regarding
files. We’ve also seen how CP/M loads program files into memory and
executes them. An operating system also has a third major function.

A program running under CP/M often needs to write some output to the
video display. Or the program might need to read something that you’ve
typed on the keyboard. Or the program might need to read a file from the
disk or to write a file to the disk. But in most cases, the CP/M program does
not write its output directly into video display memory. Likewise, the CP/M
program does not access the hardware of the keyboard to see what you’ve
typed. And the CP/M program definitely does not access the disk drive hard-
ware to read and write disk sectors.

Instead, a program running under CP/M makes use of a collection of
subroutines built into CP/M for performing these common chores. These
subroutines have been specifically designed so that programs can get easy
access to all the hardware of the computer—including the video display,
keyboard, and disk—without worrying programmers about how these pe-
ripherals are actually connected. Most important, a program running un-
der CP/M doesn’t need to know about disk sectors and tracks. That’s CP/M’s
job. It can instead store whole files on the disk and later read them.

Providing a program with easy access to the hardware of the computer is
the third major function of an operating system. The access that the oper-
ating system provides is called the application programming interface, or API.

A program running under CP/M uses the API by setting register C to a
particular value (called the function value) and executing the instruction

CALL 5

The Operating System 331

For example, a program obtains the ASCII code of a key typed on the key-
board by executing

MVI C,01h
CALL 5

On return, accumulator A contains the ASCII code of the key that was
pressed. Similarly,

MVI C,02h
CALL 5

writes the ASCII character in accumulator A to the video display at the cursor
position and then increments the cursor.

If a program needs to create a file, it sets register pair DE to an area of
memory that basically contains the name of the file. Then it executes the code:

MVI C,16h
CALL 5

In this case, the CALL 5 instruction causes CP/M to create an empty file
on the disk. The program can then use other functions to write to the file
and eventually close the file, which means it has finished using the file for
now. The same program or another program can later open the file and read
its contents.

What does CALL 5 actually do? The memory location at 0005h is set up
by CP/M to contain a JMP (Jump) instruction, which jumps to a location
in the Basic Disk Operating System (BDOS) of CP/M. This area contains a
bunch of subroutines that execute each of the CP/M functions. The BDOS—
as its name implies—is primarily responsible for maintaining the file system
on the disk. Frequently, the BDOS has to make use of subroutines in the Basic
Input/Output System (BIOS) of CP/M, which is the area that actually accesses
the hardware of the keyboard, the video display, and the disk drives. In fact,
the BIOS is the only section of CP/M that needs to know about the hard-
ware of the computer. The CCP does everything it needs to do using BDOS
functions, and so do the utilities that come with CP/M.

The API is a device-independent interface to the hardware of the computer.
What this means is that a program written for CP/M doesn’t need to know
the actual mechanics of how the keyboard works on a particular machine,
or how the video display works, or how to read and write disk sectors. It
simply uses the CP/M functions to perform tasks that involve the keyboard,
display, and disk. The bonus is that a CP/M program can run on many differ-
ent computers that might use very different hardware to access these pe-
ripherals. (All CP/M programs must have an Intel 8080 microprocessor,
however, or a processor that executes 8080 instructions, such as the Intel
8085 or the Zilog Z-80.) Just as long as the computer is running CP/M, the
program uses the CP/M functions to indirectly access this hardware. With-
out standard APIs, programs would have to be specifically tailored to run
on different types of computers.

332 Chapter Twenty-Two

CP/M was once a very popular operating system for the 8080 and remains
historically important. CP/M was the major influence behind a 16-bit oper-
ating system named QDOS (Quick and Dirty Operating System) written by
Tim Paterson of Seattle Computer Products for Intel’s 16-bit 8086 and 8088
chips. QDOS was eventually renamed 86-DOS and licensed by Microsoft
Corporation. Under the name MS-DOS (Microsoft Disk Operating System,
pronounced em ess dahs, like the German article das), the operating system
was licensed to IBM for the first IBM Personal Computer, introduced in
1981. Although a 16-bit version of CP/M (called CP/M-86) was also avail-
able for the IBM PC, MS-DOS quickly became the standard. MS-DOS (called
PC-DOS on IBM’s computers) was also licensed to other manufacturers who
created computers compatible with the IBM PC.

MS-DOS didn’t retain CP/M’s file system. The file system in MS-DOS
instead used a scheme called the File Allocation Table, or FAT, which had
been originally invented at Microsoft in 1977. The disk space is divided into
clusters, which—depending on the size of the disk—can range in size from
512 bytes to 16,384 bytes. Each file is a collection of clusters. The directory
entry for a file indicates only that file’s starting cluster. The FAT itself indi-
cates for each cluster on the disk what the next cluster is.

The directory entries on an MS-DOS disk are 32 bytes long and use the
same 8.3 filenaming convention as CP/M. The terminology is a little differ-
ent, however: The last three letters are called the filename extension rather
than the file type. The MS-DOS directory entry need not contain a list of
allocation blocks. Instead, the directory includes such useful information as
the date and time the file was last modified, and the size of the file.

The early versions of MS-DOS were structured much like CP/M. But the
BIOS wasn’t required in MS-DOS because the IBM PC itself included a
complete BIOS in ROM. The command processor in MS-DOS is a file named
COMMAND.COM. MS-DOS programs come in two flavors. Programs with
the filename extension COM are limited to 64 KB in size. Larger programs
have the filename extension EXE (pronounced eks-ee, for executable).

Although MS-DOS initially supported the CALL 5 interface for API func-
tions, a newer interface was recommended for new programs. The newer
interface used a feature of the 8086 called the software interrupt, which is
similar to a subroutine call except that the program doesn’t need to know
the actual address that it’s calling. A program calls an MS-DOS API func-
tion by executing the instruction INT 21h (pronounced int twenty-one, even
though it’s hexadecimal).

In theory, application programs are supposed to access the hardware of
the computer only through the interfaces provided by the operating system.
But many application programmers who dealt with small computer oper-
ating systems of the 1970s and early 1980s often bypassed the operating
system, particularly in dealing with the video display. Programs that directly
wrote bytes into video display memory ran faster than programs that didn’t.
Indeed, for some applications—such as those that needed to display graph-
ics on the video display—the operating system was totally inadequate. What

The Operating System 333

many programmers liked most about MS-DOS was that it “stayed out of
the way” and let programmers write programs as fast as the hardware allowed.

For this reason, popular software that ran on the IBM PC often relied
upon idiosyncrasies of the IBM PC hardware. Manufacturers of machines
intended to be competitive with the IBM PC were often forced to duplicate
these idiosyncrasies; not doing so would cause popular programs to run
poorly, if at all. Such software often included the hardware requirement
“IBM Personal Computer or 100 percent compatible” or something similar.

MS-DOS version 2.0, released in March 1983, was enhanced to accom-
modate hard disk drives, which at the time were small (by today’s standards)
but which would soon get much larger. The larger a disk drive, of course,
the more files it can store. And the more files a disk can store, the more
confusing it becomes to find a particular file or to impose any type of orga-
nization on the files.

The solution in MS-DOS 2.0 is called a hierarchical file system. This was
added to the existing MS-DOS file system with a minimum number of
changes. As you’ll recall, a disk contains an area called a directory, which
is a list of files that includes information about where the files are stored on
the disk. In a hierarchical file system, some of these files might themselves
be directories—that is, they’re files that contain a list of other files. Some
of these files might also be directories. The normal directory on the disk is
called the root directory. Directories contained in other directories are called
subdirectories. The directories (sometimes called folders) become a way to
group related files.

The hierarchical file system—and some other features of MS-DOS 2.0—
were borrowed from an operating system named UNIX, which was devel-
oped in the early 1970s at Bell Telephone Laboratories largely by Ken
Thompson (born 1943) and Dennis Ritchie (born 1941). The funny name
of the operating system is a play on words: UNIX was originally written as
a less hardy version of an earlier operating system named Multics (which
stands for Multiplexed Information and Computing Services) that Bell Labs
had been codeveloping with MIT and GE.

Among hard-core computer programmers, UNIX is the most beloved
operating system of all time. While most operating systems are written for
specific computers, UNIX was designed to be portable, which means that
it can be adapted to run on a variety of computers.

Bell Labs was, of course, a subsidiary of American Telephone & Telegraph
at the time UNIX was developed, and therefore subject to court decrees
intended to curb AT&T’s monopoly position in the telephone industry.
Originally, AT&T was prohibited from marketing UNIX; the company was
obliged to license it to others. So beginning in 1973, UNIX was extensively
licensed to universities, corporations, and the government. In 1983, AT&T
was allowed back into the computer business and released its own version
of UNIX.

334 Chapter Twenty-Two

The result is that there’s no single version of UNIX. There are, instead, a
variety of different versions known under different names running on dif-
ferent computers sold by different vendors. Lots of people have put their
fingers into UNIX and left their fingerprints behind. Still, however, a preva-
lent “UNIX philosophy” seems to guide people as they add pieces to UNIX.
Part of that philosophy is using text files as a common denominator. Many
UNIX utilities read text files, do something with them, and then write an-
other text file. UNIX utilities can be strung together in chains that do dif-
ferent types of processing on these text files.

UNIX was originally written for computers that were too large and too
expensive for just one person to use. Such computers allow multiple users
to interact with them simultaneously through a technique known as time-
sharing. The computer is connected to multiple displays and keyboards called
terminals. By quickly switching attention among all the terminals, an oper-
ating system can make it seem as if the computer is servicing everyone at the
same time.

An operating system that runs multiple programs concurrently is known
as a multitasking operating system, and obviously such an operating system
is more complex than single-tasking operating systems such as CP/M and
MS-DOS. Multitasking complicates the file system because multiple users
might try to use the same files at the same time. It also affects how the com-
puter allocates memory to the different programs, so some kind of memory
management is required. As the multiple programs running concurrently
need more memory, it’s likely that the computer won’t have enough memory
to go around. The operating system might need to implement a technique
called virtual memory, in which blocks of memory are stored in temporary
files during periods when the memory blocks aren’t needed and then read
back into memory when they are needed.

The most interesting development for UNIX in recent years has been the
Free Software Foundation (FSF) and the GNU project, both founded by
Richard Stallman. GNU (pronounced not like the animal but instead with
a distinct G at the beginning) stands for “GNU’s Not UNIX,” which, of
course, it’s not. Instead, GNU is intended to be compatible with UNIX but
distributed in a manner that prevents the software from becoming proprie-
tary. The GNU project has resulted in many UNIX-compatible utilities and
tools, and also Linux, which is the core (or kernel) of a UNIX-compatible
operating system. Written largely by Linus Torvalds of Finland, Linux has
become quite popular in recent years.

The most significant trend in operating systems since the mid-1980s,
however, has been the development of large and sophisticated systems, such
as the Apple Macintosh and Microsoft Windows, that incorporate graph-
ics and a visually rich video display intended to make applications easier to
use. I’ll describe this trend in the last chapter of this book.

335

Chapter Twenty-Three

Fixed Point,
Floating Point

umbers are numbers, and in most of our daily lives we drift casu-
ally between whole numbers, fractions, and percentages. We buy
half a carton of eggs and pay 8 1⁄4 percent sales tax with money

earned getting time-and-a-half for working 2 3⁄4 hours overtime. Most
people are fairly comfortable—if not necessarily proficient—with numbers
such as these. We can even hear a statistic like “the average American house-
hold has 2.6 people” without gasping in horror at the widespread mutila-
tion that must have occurred to achieve this.

Yet this interchange between whole numbers and fractions isn’t so casual
when it comes to computer memory. Yes, everything is stored in computers
in the form of bits, which means that everything is stored as binary num-
bers. But some kinds of numbers are definitely easier to express in terms of
bits than others.

We began using bits to represent what mathematicians call the positive
whole numbers and what computer programmers call the positive integers.
We’ve also seen how two’s complements allow us to represent negative in-
tegers in a way that eases the addition of positive and negative numbers. The
table on the following page shows the range of positive integers and two’s-
complement integers for 8, 16, and 32 bits of storage.

N

336 Chapter Twenty-Three

Number Range of Range of
of Bits Positive Integers Two’s-Complement Integers

8 0 through 255 −128 through 127
16 0 through 65,535 −32,768 through 32,767
32 0 through 4,294,967,295 −2,147,483,648 through

2,147,483,647

But that’s where we stopped. Beyond whole numbers, mathematicians also
define rational numbers as those numbers that can be represented as a ratio
of two whole numbers. This ratio is also referred to as a fraction. For ex-
ample, 3⁄4 is a rational number because it’s the ratio of 3 and 4. We can also
write this number in decimal fraction, or just decimal, form: 0.75. When we
write it as a decimal, it really indicates a fraction, in this case 75⁄100.

You’ll recall from Chapter 7 that in a decimal number system, digits to the
left of the decimal point are multiples of integral powers of ten. Similarly,
digits to the right of the decimal point are multiples of negative powers of ten.
In Chapter 7, I used the example 42,705.684, showing first that it’s equal to

4 × 10,000 +
2 × 1000 +
7 × 100 +
0 × 10 +
5 × 1 +
6 ÷ 10 +
8 ÷ 100 +
4 ÷ 1000

Notice the division signs. Then I showed how you can write this sequence
without any division:

4 × 10,000 +
2 × 1000 +
7 × 100 +
0 × 10 +
5 × 1 +
6 × 0.1 +
8 × 0.01 +
4 × 0.001

And finally here’s the number using powers of ten:

4 × 104 +
2 × 103 +
7 × 102 +
0 × 101 +
5 × 100 +
6 × 10−1 +
8 × 10−2 +
4 × 10−3

Fixed Point, Floating Point 337

Some rational numbers aren’t so easily represented as decimals, the most
obvious being 1⁄3. If you divide 3 into 1, you’ll find that 1⁄3 is equal to

0.33…

and on and on and on. It’s common to write this more concisely with a little
bar over the 3 to indicate that the digit repeats forever:

0.3

Even though writing 1⁄3 as a decimal fraction is a bit awkward, it’s still a
rational number because it’s the ratio of two integers. Similarly, 1⁄7 is

0.1428571428571428571428571428571428571428571428571428571...

or

0.142857

Irrational numbers are monsters such as the square root of 2. This num-
ber can’t be expressed as the ratio of two integers, which means that the deci-
mal fraction continues indefinitely without any repetition or pattern:

2~~1.41421356237309504880168872420969807856967187537695...

The square root of 2 is a solution of the following algebraic equation:

x2 − 2 = 0

If a number is not a solution of any algebraic equation with whole num-
ber coefficients, it’s called a transcendental. (All transcendental numbers are
irrational, but not all irrational numbers are transcendental.) Transcendental
numbers include π, which is the ratio of the circumference of a circle to its
diameter and which is approximately

3.1415926535897932846264338327950288419716939937511...

Another transcendental number is e, which is the number that this expres-
sion approaches:

1 +
n1

n

as n gets very large, or approximately

2.71828182845904523536028747135266249775724709369996...

338 Chapter Twenty-Three

All the numbers we’ve been talking about so far—rational numbers and
irrational numbers—are called real numbers. This designation distinguishes
them from the imaginary numbers, which are square roots of negative num-
bers. Complex numbers are combinations of imaginary numbers and real
numbers. Despite their name, imaginary numbers do show up in the real
world and are used (for example) in solving some advanced problems in
electronics.

We’re accustomed to thinking of numbers as continuous. If you give me
two rational numbers, I can give you a number between those two numbers.
In practice, all I have to do is take an average. But digital computers can’t
deal with continuums. Bits are either 0 or 1, with nothing in between. So
by their very nature, digital computers must deal with discrete values. The
number of discrete values you can represent is directly related to the num-
ber of bits you have available. For example, if you choose to store positive
integers using 32 bits, the values that you can store are the whole numbers
from 0 through 4,294,967,295. If you need to store the value 4.5, you must
rethink your approach and do something different.

Can fractional values be represented in binary? Yes they can. The easi-
est approach is probably binary-coded decimal (BCD). As you might remem-
ber from Chapter 19, BCD is a binary coding of decimal numbers. Each
decimal digit (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) requires 4 bits, as shown in the
following table:

Decimal Digit Binary Value
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

BCD is particularly useful in computer programs that work with money
amounts in dollars and cents. Banks and insurance companies are just two
obvious industries that deal with money a lot; in computer programs used
by these sorts of companies, many of the fractional numbers require just two
decimal places.

It’s common to store two BCD digits in 1 byte, a system that’s sometimes
called packed BCD. Two’s complements aren’t used with BCD. For this
reason, packed BCD also usually requires an extra bit to indicate whether the
number is positive or negative. This is called the sign bit. Because it’s con-
venient to have a particular BCD number stored in a whole number of bytes,
that one little sign bit usually involves sacrificing 4 bits or 8 bits of storage.

Fixed Point, Floating Point 339

Let’s look at an example. Suppose the amounts of money that your com-
puter program needs to work with never get as high as $10 million in either
the positive or negative direction. In other words, you only need to represent
money values ranging from −9,999,999.99 through 9,999,999.99. You can
do that by using 5 bytes for every dollar amount you need to store in memory.
For example, the amount −4,325,120.25 is represented by the 5 bytes

00010100 00110010 01010001 00100000 00100101

or, in hexadecimal:

14h 32h 51h 20h 25h

Notice the nibble at the far left is 1 to indicate a negative value. That’s the
sign bit. It would be 0 if the number were positive. All the digits in the num-
ber require 4 bits each, and you can read them directly from the hexadeci-
mal values.

If you needed instead to represent values from −99,999,999.99 through
99,999,999.99, you’d need 6 bytes—5 bytes for the 10 digits and a whole
byte just for the sign bit.

This type of storage and notation is also called fixed-point format because
the decimal point is always fixed at a particular number of places—in our
example, at two decimal places. Notice that there’s nothing actually stored
along with the number that indicates the position of the decimal point.
Programs that work with numbers in fixed-point format must know where
the decimal point is. You can create fixed-point numbers with any number
of decimal places, and you can mix and match these numbers in the same
computer program. But any part of the program that does arithmetic on the
numbers has to know where the decimal points are.

Fixed-point format works well only if you know that numbers aren’t going
to get too large for the memory location that you’ve mapped out and that
you won’t need more decimal places. Where fixed-point format utterly fails
is in situations in which numbers can get very large or very small. Suppose
you need to reserve an area of memory where you can store certain distances
in units of feet. The problem is that these distances can range all over the
place. The distance from the earth to the sun is 490,000,000,000 feet, and
the radius of the hydrogen atom is 0.00000000026 feet. You’d need 12 bytes
of fixed-point storage to accommodate values that can get as large and as
small as these.

We can probably work out a better way of storing numbers such as these
if we recall that scientists and engineers enjoy specifying numbers using a
system called scientific notation. Scientific notation is particularly useful for
representing very large and very small numbers because it incorporates a
power of ten that allows us to avoid writing out long strings of zeros. In
scientific notation, the number

490,000,000,000

340 Chapter Twenty-Three

is written

4.9 × 1011

and the number

0.00000000026

is written

2.6 × 10−10

In these two examples, the numbers 4.9 and 2.6 are called the fraction part,
or the characteristic, or sometimes (although this word is more properly used
in conjunction with logarithms) the mantissa. But to be more in tune with
the terminology used with computers, I’m going to call this part of scien-
tific notation the significand.

The exponent part is the power to which 10 is raised. In the first example,
the exponent is 11; and in the second example, the exponent is −10. The
exponent tells you how many places the decimal point has been moved in
the significand.

By convention, the significand is always greater than or equal to 1 and
less than 10. Although the following numbers are the same,

4.9 × 1011 = 49 × 1010 = 490 × 109 = 0.49 × 1012 = 0.049 × 1013

the first is preferred. That’s sometimes called the normalized form of scien-
tific notation.

Notice that the sign of the exponent indicates only the magnitude of the
number and not whether the number itself is negative or positive. Here are
two examples of negative numbers in scientific notation:

−5.8125 × 107

is equal to

−58,125,000

and

−5.8125 × 10−7

is equal to

−0.00000058125

In computers, the alternative to fixed-point notation is called floating-
point notation, and the floating-point format is ideal for storing small and
large numbers because it’s based on scientific notation. But the floating-point
format as used in computers employs binary numbers written in scientific
notation. The first thing we have to figure out is what fractional numbers
look like in binary.

This is actually easier than it might first seem. In decimal notation, dig-
its to the right of the decimal point represent negative powers of ten. In binary

Fixed Point, Floating Point 341

notation, digits to the right of the binary point (which is simply a period and
looks just like a decimal point) represent negative powers of two. For ex-
ample, this binary number

101.1101

can be converted to decimal using this formula:

1 × 4 +
0 × 2 +
1 × 1 +
1 ÷ 2 +
1 ÷ 4 +
0 ÷ 8 +
1 ÷ 16

The division signs can be replaced with negative powers of two:

1 × 22 +
0 × 21 +
1 × 20 +
1 × 2−1 +
1 × 2−2 +
0 × 2−3 +
1 × 2−4

Or the negative powers of two can be calculated by starting at 1 and repeat-
edly dividing by 2:

1 × 4 +
0 × 2 +
1 × 1 +
1 × 0.5 +
1 × 0.25 +
0 × 0.125 +
1 × 0.0625

By this calculation, the decimal equivalent of 101.1101 is 5.8125.
In decimal scientific notation, the normalized significand should be greater

than or equal to 1 but less than 10. Similarly, the normalized significand of
numbers in binary scientific notation is always greater than or equal to 1 but
less than binary 10, which is 2 in decimal. So in binary scientific notation,
the number

101.1101

is expressed as

1.011101 × 22

342 Chapter Twenty-Three

One interesting implication of this rule is that a normalized binary floating-
point number always has a 1 and nothing else at the left of the binary point.

Most contemporary computers and computer programs that deal with
floating-point numbers use a standard established by the IEEE (the Institute
of Electrical and Electronics Engineers) in 1985, a standard also recognized
by ANSI (the American National Standards Institute). ANSI/IEEE Std 754-
1985 is called the IEEE Standard for Binary Floating-Point Arithmetic. It’s
not very lengthy as standards go—just 18 pages—but gives the basics of
encoding binary floating-point numbers in a convenient manner.

The IEEE floating-point standard defines two basic formats: single pre-
cision, which requires 4 bytes, and double precision, which requires 8 bytes.

Let’s look at the single-precision format first. It has three parts: a 1-bit sign
(0 for positive and 1 for negative), an 8-bit exponent, and a 23-bit significand
fraction arranged like this, with the least-significant bits on the right:

s = 1-Bit
Sign

e = 8-Bit
Exponent

f = 23-Bit
Significand Fraction

That’s a total of 32 bits, or 4 bytes. Because the significand of a normal-
ized binary floating-point number always has a 1 to the left of the binary
point, that bit is not included in the storage of floating-point numbers in the
IEEE format. The 23-bit fractional part of the significand is the only part
stored. So even though only 23 bits are used to store the significand, the
precision is said to be 24 bits. We’ll get a feel for what 24-bit precision means
in a moment.

The 8-bit exponent part can range from 0 through 255. This is called a
biased exponent, which means that you must subtract a number—called the
bias—from the exponent in order to determine the signed exponent that
actually applies. For single-precision floating-point numbers, this bias is 127.

The exponents 0 and 255 are used for special purposes that I’ll describe
shortly. If the exponent ranges from 1 through 254, the number represented
by particular values of s (the sign bit), e (the exponent), and f (the significand
fraction) is

(−1)s × 1.f × 2e−127

That negative 1 to the s power is a mathematician’s annoyingly clever way of
saying, “If s is 0, the number is positive (because anything to the 0 power equals
1); and if s is 1, the number is negative (because −1 to the 1 power is −1).”

The next part of the expression is 1.f, which means a 1 followed by a
binary point, followed by the 23 bits of the significand fraction. This is
multiplied by 2 to a power. The exponent is the 8-bit biased exponent stored
in memory minus 127.

Notice that I haven’t mentioned any way to express a very common num-
ber that we seem to have forgotten about, namely 0. That’s one of the spe-
cial cases, which are these:

Fixed Point, Floating Point 343

• If e equals 0, and f equals 0, the number is 0. Generally, all 32
bits are set to 0 to signify 0. But the sign bit can be 1, in which
case the number is interpreted as a negative 0. A negative 0 can
indicate a very small number that can’t be represented with the
available digits and exponents in single-precision format but
which is still less than 0.

• If e equals 0 and f doesn’t equal 0, the number is valid, but it’s
not normalized. The number equals

(−1)s × 0.f × 2−127

Notice that the significand has a 0 to the left of the binary point.
• If e equals 255 and f equals 0, the number is positive or negative

infinity, depending on the sign s.
• If e equals 255 and f doesn’t equal 0, the value is considered to

be not a number, which is abbreviated NaN. A NaN could indi-
cate an unknown number or the result of an invalid operation.

The smallest normalized positive or negative binary number that can be
represented in single-precision floating-point format is

1.00000000000000000000000TWO × 2−126

That’s 23 binary zeros following the binary point. The largest normalized
positive or negative number is that can be represented in single-precision
floating-point format is this:

1.11111111111111111111111TWO × 2127

In decimal, these two numbers are approximately 1.175494351 × 10−38 and
3.402823466 × 1038. That’s the effective range of single-precision floating-
point notation.

You might recall that 10 binary digits are approximately the same as 3
decimal digits. By that I mean that 10 bits set to 1, which is 3FFh in hexa-
decimal and 1023 in decimal, is approximately equal to 3 decimal digits set
to 9, or 999. Or

210 ≈ 103

This relationship implies that the 24-bit binary number stored in single-
precision floating-point format is roughly the equivalent of 7 decimal dig-
its. For this reason, it’s said that the single-precision floating-point format
offers a precision of 24 bits, or about 7 decimal digits. What does this mean?

When we were looking at fixed-point numbers, it was obvious how ac-
curate the numbers were. For amounts of money, for example, a fixed-point
number with two decimal places is obviously accurate to the nearest penny.
But with floating-point numbers, we can’t say something like that. Depending
on the value of the exponent, sometimes a floating-point number can be

344 Chapter Twenty-Three

accurate to a tiny fraction of a penny, and sometimes it’s not even accurate
to the nearest dollar.

It’s more appropriate to say that a single-precision floating-point num-
ber is accurate to 1 part in 224, or 1 part in 16,777,216, or about 6 parts in
a million. But what does this really mean?

For one thing, it means that if you try to represent both 16,777,216 and
16,777,217 as single-precision floating-point numbers, they’ll end up being
identical! Moreover, any number between those two (such as 16,777,216.5)
is also considered to be identical. All three of these decimal numbers are
stored as the 32-bit single-precision floating-point value

4B800000h

which, divided into the sign, exponent, and significand bits, looks like this:

0 10010111 00000000000000000000000

which is the number

1.00000000000000000000000 TWO × 224.

The next-highest significand is the binary floating-point number that rep-
resents 16,777,218 or

1.00000000000000000000001 TWO × 224

It might or might not be a problem that two different decimal numbers end
up being stored as identical floating-point values.

But if you were writing a program for a bank, and you were using single-
precision floating-point arithmetic to store dollars and cents, you probably
would be deeply disturbed to discover that $262,144.00 is the same as
$262,144.01. Both these numbers are

1.00000000000000000000000 TWO × 218.

That’s one reason why fixed-point is preferred when dealing with dollars and
cents. When you work with floating-point numbers, you could also discover
other little quirks that can drive you mad. Your program will do a calcula-
tion that should yield the result 3.50 and instead you get 3.499999999999.
This type of thing tends to happen in floating-point calculations, and there
isn’t a whole lot you can do about it.

If floating-point notation is what you want to use but single-precision
doesn’t quite hack it, you’ll probably want to use double-precision floating-
point format. These numbers require 8 bytes of storage, arranged like this:

s = 1-Bit
Sign

e = 11-Bit
Exponent

f = 52-Bit
Significand Fraction

Fixed Point, Floating Point 345

The exponent bias is 1023, or 3FFh, so the number stored in such a format is

(−1)s × 1.f × 2e−1023

Similar rules as those we encountered with single-precision format apply for
0, infinity, and NaN.

The smallest positive or negative double-precision floating-point num-
ber is

1.00TWO × 2−1022

That’s 52 zeros following the binary point. The largest is

1.11TWO × 21023

The range is decimal in approximately 2.2250738585072014 × 10–308 to
1.7976931348623158 × 10308. Ten to the 308th power is a very big num-
ber. It’s 1 followed by 308 decimal zeros.

The 53 bits of the significand (including the 1 bit that’s not included)
is a resolution approximately equivalent to 16 decimal digits. This is much
better than single-precision floating-point format, but it still means that
eventually some number will equal some other number. For example,
140,737,488,355,328.00 is the same as 140,737,488,355,328.01. These two
numbers are both stored as the 64-bit double-precision floating-point value

42E0000000000000h

which decodes as

1.00TWO × 247

Of course, developing a format for storing floating-point numbers in
memory is only a small part of actually using these numbers in your
assembly-language programs. If you were indeed developing a desert-island
computer, you would now be faced with the job of writing a collection of
functions that add, subtract, multiply, and divide floating-point numbers.
Fortunately, these jobs can be broken down into smaller jobs that involve
adding, subtracting, multiplying, and dividing integers, which you already
know how to do.

For example, floating-point addition basically requires that you add
two significands; the tricky part is using the two exponents to figure out
how the two significands mesh. Suppose you needed to perform the following
addition:

(1.1101 × 25) + (1.0010 × 22)

You need to add 11101 and 10010, but not exactly like that. The difference
in exponents indicates that the second number must be offset from the first.

346 Chapter Twenty-Three

The integer addition really requires that you use 11101000 and 10010. The
final sum is

1.1111010 × 25

Sometimes the exponents will be so far apart that one of the two numbers
won’t even affect the sum. This would be the case if you were adding the
distance to the sun and the radius of the hydrogen atom.

Multiplying two floating-point numbers means multiplying the two
significands as if they were integers and adding the two integer exponents.
Normalizing the significand could result in your decrementing the new ex-
ponent once or twice.

Another layer of complexity in floating-point arithmetic involves the
calculation of fun stuff such as roots and exponents and logarithms and trigo-
nometric functions. But all of these jobs can be done with the four basic float-
ing-point operations: addition, subtraction, multiplication, and division.

For example, the sine function in trigonometry can be calculated with a
series expansion, like this:

sin(x) = x - x3

3! + x5

5! - x7

7! +...

The x argument must be in radians. There are 2π radians in 360 degrees.
The exclamation point is a factorial sign. It means to multiply together all
the integers from 1 through the indicated number. For example, 5! equals
1 × 2 × 3 × 4 × 5. That’s just a multiplication. The exponent in each term is
also a multiplication. The rest is just division, addition, and subtraction. The
only really scary part is the ellipsis at the end, which means to continue the
calculations forever. In reality, however, if you restrict yourself to the range
0 through π/2 (from which all other sine values can be derived), you don’t
have to go anywhere close to forever. After about a dozen terms, you’re ac-
curate to the 53-bit resolution of double-precision numbers.

Of course, computers are supposed to make things easy for people, so the
chore of writing a bunch of routines to do floating-point arithmetic seems
at odds with the goal. That’s the beauty of software, though. Once some-
body writes the floating-point routines for a particular machine, other people
can use them. Floating-point arithmetic is so important to scientific and
engineering applications that it’s traditionally been given a very high prior-
ity. In the early days of computers, writing floating-point routines was al-
ways one of the first software jobs when a new type of computer was built.

In fact, it even makes sense to implement computer machine-code instruc-
tions that perform floating-point arithmetic directly! Obviously, that’s easier
to say than to do. But that’s how important floating-point calculations are.
If you can implement floating-point arithmetic in hardware—similar to the
multiply and divide instructions in 16-bit microprocessors—all floating-point
calculations done on the machine will be faster.

Fixed Point, Floating Point 347

The first commercial computer that included floating-point hardware as
an option was the IBM 704 in 1954. The 704 stored all numbers as 36-bit
values. For floating-point numbers, that broke down to a 27-bit significand,
an 8-bit exponent, and a sign bit. The floating-point hardware could do
addition, subtraction, multiplication, and division. Other floating-point
functions had to be implemented in software.

Hardware floating-point arithmetic came to the desktop in 1980, when
Intel released the 8087 Numeric Data Coprocessor chip, a type of integrated
circuit usually referred to these days as a math coprocessor or a floating-point
unit (FPU). The 8087 is called a coprocessor because it couldn’t be used by
itself. It could be used only in conjunction with the 8086 and 8088, Intel’s
first 16-bit microprocessors.

The 8087 is a 40-pin chip that uses many of the same signals as the 8086
and 8088 chips. The microprocessor and the math coprocessor are connected
by means of these signals. When the CPU reads a special instruction—called
ESC for Escape—the coprocessor takes over and executes the next machine
code, which indicates one of 68 instructions that include trigonometry,
exponents, and logarithms. Data types are based on the IEEE standard. At
the time, the 8087 was considered to be the most sophisticated integrated
circuit ever made.

You can think of the coprocessor as a little self-contained computer. In
response to a particular floating-point machine code instruction (for example,
FSQRT to calculate a square root), the coprocessor internally executes its
own series of instructions coded in ROM. These internal instructions are
called microcode. The instructions generally loop, so the result of the cal-
culation isn’t immediately available. Still, however, the math coprocessor is
usually at least 10 times faster than the equivalent routines done in software.

The motherboard of the original IBM PC had a 40-pin socket for an 8087
chip right next to the 8088 chip. Unfortunately, this socket was empty. Users
who needed the extra floating-point speed had to buy an 8087 separately
and install it themselves. Even after installation of the math coprocessor, not
all applications could be expected to run faster. Some applications—such as
word processors—have very little need for floating-point arithmetic. Oth-
ers, such as spreadsheet programs, can use floating-point calculation much
more, and these programs should run faster, but not all of them did.

You see, programmers had to write specific code for the coprocessor that
used the coprocessor’s machine-code instructions. Because a math coproces-
sor wasn’t a standard piece of hardware, many programmers didn’t bother
to do so. After all, they had to write their own floating-point subroutines
anyway (because most people didn’t have a math coprocessor installed),
so it became extra work—not less work—to support the 8087 chip. Even-
tually, programmers learned to write their applications to use the math
coprocessor if it was present on the machine their programs were running
on and to emulate it if it wasn’t there.

348 Chapter Twenty-Three

Over the years, Intel also released a 287 math coprocessor for the 286
chip, and a 387 for the 386. But with the release of the Intel 486DX in 1989,
the FPU was built right into the CPU itself. No longer was it an option!
Unfortunately, in 1991 Intel released a lower-cost 486SX that did not have
the built-in FPU and instead offered a 487SX math coprocessor as an op-
tion. With the 1993 release of the Pentium, however, the built-in FPU be-
came standard again, perhaps for all time. Motorola integrated an FPU with
its 68040 microprocessor, which was released in 1990. Previously Motorola
sold 68881 and 68882 math coprocessors to support the earlier micropro-
cessors in the 68000 family. The PowerPC chips also have built-in floating-
point hardware.

Although hardware for floating-point arithmetic is a nice gift for the
beleaguered assembly-language programmer, it’s a rather minor historical
advance when compared with some other work that began in the early 1950s.
Our next stop: computer languages.

349

Chapter Twenty-Four

Languages
High and Low

rogramming in machine code is like eating with a toothpick. The bites
are so small and the process so laborious that dinner takes forever.
Likewise, the bytes of machine code perform the tiniest and simplest

of imaginable computing tasks—loading a number from memory into the
processor, adding it to another, storing the result back to memory—so that
it’s difficult to imagine how they contribute to an entire meal.

We have at least progressed from that primitive era at the beginning of
Chapter 22, in which we were using switches on a control panel to enter
binary data into memory. In that chapter, we discovered how we could write
simple programs that let us use the keyboard and the video display to enter
and examine hexadecimal bytes of machine code. This was certainly better,
but it’s not the last word in improvements.

As you know, the bytes of machine code are associated with certain short
mnemonics, such as MOV, ADD, CALL, and HLT, that let us refer to the
machine code in something vaguely resembling English. These mnemonics
are often written with operands that further indicate what the machine-code
instruction does. For example, the 8080 machine-code byte 46h causes the
microprocessor to move into register B the byte stored at the memory ad-
dress referenced by the 16-bit value in the register pair HL. This is more con-
cisely written as

MOV B,[HL]

Of course, it’s much easier to write programs in assembly language than in
machine code, but the microprocessor can’t understand assembly language.

P

350 Chapter Twenty-Four

I’ve explained how you’d write assembly-language programs on paper. Only
when you thought you were ready to run an assembly-language program
on the microprocessor would you hand-assemble it, which means that you’d
convert the assembly-language statements to machine-code bytes and enter
them into memory.

What’s even better is for the computer to do this conversion for you. If
you were running the CP/M operating system on your 8080 computer, you’d
already have all the tools you need. Here’s how it works.

First you create a text file to contain your program written in assembly
language. You can use the CP/M program ED.COM for this job. This pro-
gram is a text editor, which means that it allows you to create and modify
text files. Let’s suppose you create a text file with the name
PROGRAM1.ASM. The ASM file type indicates that this file contains an
assembly-language program. The file might look something like this:

 ORG 0100h
 LXI DE, Text
 MVI C,9
 CALL 5
 RET
Text: DB ‘Hello!$’
 END

This file has a couple of statements we haven’t seen before. The first one is
an ORG (for origin) statement. This statement does not correspond to an
8080 instruction. Instead, it indicates that the address of the next statement
is to begin at address 0100h, which you’ll recall is the address where CP/M
loads programs into memory.

The next statement is an LXI (Load Extended Immediate) instruction,
which loads a 16-bit value into the register pair DE. In this case, that 16-
bit value is given as the label Text. That label is located near the bottom of
the program in front of a DB (Data Byte) statement, something else we
haven’t seen before. The DB statement can be followed by several bytes sepa-
rated by commas or (as I do here) by some text in single quotation marks.

The MVI (Move Immediate) statement moves the value 9 into register C.
The CALL 5 statement makes a CP/M function call. Function 9 means to
display a string of characters beginning at the address given by the DE regis-
ter pair and stop when a dollar sign is encountered. (You’ll notice that the text
in the last line of the program ends with a dollar sign. The use of a dollar sign
to signify the end of a character string is quite odd, but that’s the way CP/M
happens to work.) The final RET statement ends the program and returns
control to CP/M. (That’s actually one of several ways to end a CP/M pro-
gram.) The END statement indicates the end of the assembly-language file.

So we have a text file containing seven lines of text. The next step is to
assemble it, which means to convert it to machine code. Previously we’ve
done this by hand. But since we’re running CP/M, we can use a program

Languages High and Low 351

included with CP/M named ASM.COM. This is the CP/M assembler. We run
ASM.COM from the CP/M command line this way:

ASM PROGRAM1.ASM

The ASM program looks at the file PROGRAM1.ASM and creates a new
file named PROGRAM1.COM that contains the machine code correspond-
ing to the assembly-language statements that we wrote. (Actually there’s
another step in the process, but it’s not important in this account of what
happens.) Now you can run PROGRAM1.COM from the CP/M command
line. It displays the text “Hello!” and then ends.

The PROGRAM1.COM file contains the following 16 bytes:

11 09 01 OE 09 CD 05 00 C9 48 65 6C 6C 6F 21 24

The first 3 bytes are the LXI instruction, the next 2 the MVI instruction, the
next 3 the CALL instruction, and the next the RET instruction. The last 7
bytes are the ASCII characters for the five letters of “Hello,” the exclama-
tion point, and the dollar sign.

What an assembler such as ASM.COM does is read an assembly-language
program (often called a source-code file) and write out a file containing
machine code—an executable file. In the grand scheme of things, assemblers
are fairly simple programs because there’s a one-to-one correspondence
between the assembly-language mnemonics and machine code. The assem-
bler works by separating each line of text into mnemonics and arguments
and then comparing these small words and letters with a list that the assem-
bler contains of all the possible mnemonics and arguments. These compari-
sons reveal which machine-code instructions correspond to each statement.

Notice how the assembler figures out that the LXI instruction must set
the register pair DE to the address 0109h. If the LXI instruction itself is lo-
cated at 0100h (as it is when CP/M loads the program into memory to run),
address 0109h is where the text string begins. Generally a programmer us-
ing an assembler doesn’t need to worry about the specific addresses associ-
ated with different parts of the program.

The first person to write the first assembler had to hand-assemble the
program, of course. A person who writes a new (perhaps improved) assem-
bler for the same computer can write it in assembly language and then use
the first assembler to assemble it. Once the new assembler is assembled, it
can assemble itself.

Every time a new microprocessor comes out, a new assembler is needed.
The new assembler, however, can first be written on an existing computer
using that computer’s assembler. This is called a cross-assembler. The assem-
bler runs on Computer A but creates code that runs on Computer B.

Although an assembler eliminates the less-creative aspects of assembly-
language programming (the hand-assembling part), assembly language still
has two major problems. The first problem (which you’ve perhaps already

352 Chapter Twenty-Four

surmised) is that it can be very tedious. You’re working down on the level
of the microprocessor chip, and you have to worry about every little thing.

The second problem is that assembly language isn’t portable. If you write
an assembly-language program for the Intel 8080, it’s not suitable for the
Motorola 6800. You must rewrite the program in 6800 assembly language.
This probably won’t be as difficult as writing the original program because
you’ve already solved the major organizational and algorithmic problems.
But it’s still a lot of work.

I explained in the last chapter how modern microprocessors have built-
in machine-code instructions that do floating-point arithmetic. This is cer-
tainly convenient, but it doesn’t go quite far enough. It would be preferable
to abandon entirely those processor-dependent machine-code instructions
that perform individual rudimentary arithmetic operations, and instead
express multiple mathematical operations using a time-honored algebraic
notation. Here’s an example:

A × Sin (2 × PI + B) / C

where A, B, and C are numbers and PI is equal to 3.14159.
Well, why not? If such a statement were in a text file, it should be pos-

sible to write an assembly-language program that reads the text file and
converts the algebraic expression to machine code.

If you needed to calculate such an algebraic expression only once, you
could do it by hand or with a calculator. It’s likely you’re considering a
computer solution because you need to calculate that expression with many
different values of A, B, and C. For this reason, the algebraic expression will
probably not appear in isolation. You should also consider some kind of
context for the expression that allows it to be evaluated for different values.

What you’re on the verge of creating here is known as a high-level pro-
gramming language. Assembly language is considered a low-level language
because it’s very close to the hardware of the computer. Although the term
high-level is used to describe any programming language other than assembly
language, some languages are considered to be higher level than others. If
you were the president of a company and you could sit at your computer
and type in (or better yet, just prop your feet up and dictate), “Calculate all
the profits and losses for this year, write up an annual report, print off a
couple thousand copies, and send them to all our stockholders,” you would
be working with a very high-level language indeed! In the real world, pro-
gramming languages don’t come anywhere close to that ideal.

Human languages are usually the result of hundreds and thousands of
years of complex influences, random changes, and adaptations. Even arti-
ficial languages such as Esperanto betray their origins in real language. High-
level computer languages are, however, more deliberate conceptions. The
challenge of inventing a programming language is quite appealing to some
people because the language defines how a person conveys instructions to
the computer. It was estimated in 1993 that there had been over 1000 high-
level languages invented and implemented since the beginning of the 1950s.

Languages High and Low 353

Of course, it’s not enough to simply define a high-level language (which
involves developing a syntax to express all the things you want to do with
the language); you must also write a compiler, which is the program that
converts the statements of your high-level language to machine code. Like
an assembler, a compiler must read through a source-code file character by
character and break it down into short words and symbols and numbers.
A compiler, however, is much more complex than an assembler. An assem-
bler is simplified somewhat because of the one-to-one correspondence be-
tween assembly-language statements and machine code. A compiler usually
must translate a single statement of a high-level language into many machine-
code instructions. Compilers aren’t easy to write. Whole books are devoted
to their design and construction.

High-level languages have advantages and disadvantages. A primary
advantage is that high-level languages are usually easier to learn and to
program in than assembly languages. Programs written in high-level lan-
guages are often clearer and more concise. High-level languages are often
portable—that is, they aren’t dependent on a particular processor as are as-
sembly languages. Thus, they let a programmer work without knowing about
the underlying structure of the machine on which the program will be run-
ning. Of course, if you need to run the program on more than one proces-
sor, you need compilers that generate machine code for those processors. The
actual executable files are still specific to individual processors.

On the other hand, it’s almost always the case that a good assembly-
language programmer can write better code than a compiler can. What this
means is that an executable produced from a program written in a high-level
language will be larger and slower than a functionally identical program writ-
ten in assembly language. (In recent years, however, this has become less
obvious as microprocessors have become more complex and compilers have
also become more sophisticated in optimizing code.)

Also, although a high-level language might make a processor easy to use,
it doesn’t make it more powerful. Anything that a processor is capable of
you can exploit in assembly language. Because a high-level language must
be translated into machine code, a high-level language can only reduce the
capabilities of a processor. Indeed, if a high-level language is truly portable,
it can’t use features specific to certain processors.

An example: Many processors have bit-shifting instructions. As you’ll
recall, these instructions shift the bits of the accumulator to the right or left.
But almost no high-level programming languages include such operations.
If you have a programming job that could use bit shifting, you’ll have to
mimic it by multiplying or dividing by 2. (Not that this is bad: Indeed, many
modern compilers use a processor’s bit-shifting instructions to implement
multiplication or division by powers of two.) Many languages also don’t
include Boolean operations on bits.

In the early days of home computers, most application programs were
written in assembly language. These days, however, assembly language is
rarely used except for special purposes. As hardware has been added to
processors that implements pipelining—the progressive execution of several

354 Chapter Twenty-Four

instruction codes simultaneously—assembly language has become trickier
and more difficult. At the same time, compilers have become more sophis-
ticated. The larger storage and memory capacity of today’s computers has
also played a role in this trend: Programmers no longer feel the need to cre-
ate code that runs in a small amount of memory and fits on a small diskette.

Although designers of many early computers attempted to formulate prob-
lems for them in algebraic notation, the first real working compiler is gen-
erally considered to be the A-0 for the UNIVAC created by Grace Murray
Hopper (1906–1992) at Remington-Rand in 1952. Dr. Hopper got an early
start with computers when she worked for Howard Aiken on the Mark I in
1944. In her eighties, she was still working in the computer industry doing
public relations for Digital Equipment Corporation (DEC).

The oldest high-level language still in use today (although extensively
revised over the years) is FORTRAN. Many computer languages have
made-up names that are written in uppercase because they’re acronyms of
sorts. FORTRAN is a combination of the first three letters of FORmula and
the first four letters of TRANslation. It was developed at IBM for the 704
series of computers in the mid-1950s. For many years, FORTRAN was
considered the language of choice for scientists and engineers. It has very
extensive floating-point support and even supports complex numbers (which,
as I explained in the last chapter, are combinations of real and imaginary
numbers).

All programming languages have their defenders and detractors, and
people can get passionate about their favorites. In an attempt to assume a
neutral position, I’ve chosen a language to serve as an archetype for this
account of programming concepts that almost no one uses anymore. Its name
is ALGOL (which stands for ALGOrithmic Language, but ALGOL the lan-
guage also shares its name with the second brightest star in the constella-
tion Perseus). ALGOL is also appropriate for this exploration into the nature
of high-level programming languages because it’s in many ways a seminal
language, the direct ancestor of many popular general-purpose languages of
the past 40 years. Even today, people refer to “ALGOL-like” programming
languages.

The first version of the language, known as ALGOL 58, was designed by
an international committee in 1957 and 1958. It was improved two years
later in 1960, and the revised version was named ALGOL 60. Eventually,
there was an ALGOL 68, but for this chapter I’ll be using the version of
ALGOL as described by the document “Revised Report on the Algorithmic
Language ALGOL 60” finalized in 1962 and first published in 1963.

Let’s write some ALGOL code. We’ll assume we have an ALGOL com-
piler named ALGOL.COM that runs under CP/M or perhaps MS-DOS.
Our first ALGOL program is a text file named FIRST.ALG. Notice the ALG
file type.

Languages High and Low 355

An ALGOL program must be enclosed within the words begin and end.
Here’s a program that displays a line of text:

begin
 print (‘This is my fist ALGOL program!’);
ende

You can run the ALGOL compiler by specifying the FIRST.ALG program
like this:

ALGOL FIRST.ALG

The ALGOL compiler will probably respond by displaying something similar
to the following:

Line 3: Unrecognized keyword ‘ende’.

A compiler is pickier about spelling than an old-fashioned English teacher.
I misspelled the word end when I was typing the program, so the compiler
tells me that the program has a syntax error. At the time it encountered ende,
it expected to find a keyword, which is a word that it recognizes.

After fixing the problem, you can run the ALGOL compiler again. Some-
times a compiler will create an executable directly (named FIRST.COM, or
perhaps FIRST.EXE under MS-DOS); sometimes you need to perform an-
other step. Regardless, you’ll soon be able to run the FIRST program from
the command line:

FIRST

The FIRST program responds by displaying

This is my fist ALGOL program!

Oops! Another spelling error. This is one that the compiler could not be
expected to find. For that reason it’s called a run-time error—an error that’s
apparent only when you run the program.

As is probably obvious, the print statement in our first ALGOL program
displays something on the screen, in this case a line of text. (The program is
thus the ALGOL equivalent of the CP/M assembly-language program shown
earlier in this chapter.) The print statement isn’t actually part of the official
specification of the ALGOL language, but I’m assuming that the particular
ALGOL compiler we’re using includes such a facility, sometimes called a
built-in function. Most ALGOL statements (but not begin and end) must be
followed by a semicolon. The indenting of the print statement isn’t required,
but indenting is often used to make the structure of the program clearer.

Let’s assume now that you want to write a program that multiplies two
numbers. Every programming language includes the concepts of variables.
In a program, a variable’s name is a letter, a short sequence of letters, or even
a short word. In reality, the variable corresponds to a memory location, but

356 Chapter Twenty-Four

in the program it’s referenced by means of a name, not a numeric memory
address. This program has three variables named a, b, and c:

begin
 real a, b, c;

 a := 535.43;
 b := 289.771;
 c := a × b;

 print (‘The product of ‘, a, ‘ and ‘, b, ‘ is ‘, c);
end

The real statement is called a declaration statement. It indicates that you
want to declare the presence of variables in your program. In this case, the
variables are named a, b, and c and are real or floating-point numbers.
(ALGOL also supports the keyword integer to declare integer variables.)
Usually programming languages require that variable names begin with a
letter. Variable names can also contain numbers, just as long as the first
character is a letter, but they must not contain spaces or most other charac-
ters. Often compilers place limits on the length of a variable name. I’ll just
use single letters in the example in this chapter.

If the particular ALGOL compiler we happen to be using supports the
IEEE floating-point standard, the three variables in the program each require
4 bytes of storage (for single-precision numbers) or 8 bytes of storage (for
double-precision numbers).

The next three statements are assignment statements. In ALGOL, you can
always recognize an assignment statement because it’s designated by a co-
lon followed by the equal sign. (In most computer languages, only the equal
sign is required for an assignment statement.) On the left is a variable. On
the right is an expression. The variable is set to the number that results from
an evaluation of the expression. The first two assignment statements indi-
cate that both a and b are assigned particular values. The third assignment
statement in the program assigns the variable c to the product of variables
a and b.

These days, the familiar × multiplication symbol is usually not allowed
in programming languages because it’s not part of the ASCII and EBCDIC
character sets. Most programming languages use an asterisk to indicate
multiplication. While ALGOL uses a slash (/) for division, the language also
includes a division sign (÷) for integer division, which indicates how many
times the divisor is contained in the dividend. ALGOL also defines an
arrow (↑), another non-ASCII character, for exponentiation.

Finally the print statement displays everything. It combines text and vari-
ables separated by commas. Displaying ASCII characters is probably not a

Languages High and Low 357

major chore for the print statement, but here the function must also convert
the floating-point numbers to ASCII:

The product of 535.43 and 289.771 is 155152.08653

The program then terminates and returns control to the operating system.
If you want to multiply a couple of other numbers, you’ll need to edit the

program, change the numbers, recompile it, and run it again. You can avoid
this frequent recompiling by taking advantage of another built-in function
named read.

begin
 real a, b, c;

 print (‘Enter the first number: ‘);
 read (a);

 print (‘Enter the second number: ‘);
 read (b);

 c := a × b;

 print (‘The product of ‘, a, ‘ and ‘, b, ‘ is ‘, c);
end

The read statements read ASCII characters that you type at the keyboard and
convert them to floating-point values.

A very important construction in high-level languages is the loop. The loop
allows you to write a program that does the same thing for many different
values of a variable. Suppose you want to write a program that calculates
the cubes of 3, 5, 7, and 9. You can do it like this:

begin
 real a, b;

 for a := 3, 5, 7, 9 do
 begin
 b := a × a × a;
 print (‘The cube of ‘, a, ‘ is ‘, b);
 end
end

The for statement sets the variable a first to the value 3 and then executes
the statement that follows the do keyword. If there’s more than one state-
ment that must be executed (as is the case here), the multiple statements must
be included between begin and end statements. These two keywords define

358 Chapter Twenty-Four

a block of statements. The for statement then executes those same statements
for the variable a set to 5, 7, and 9.

Here’s another version of the for statement. This one calculates the cubes
of odd numbers from 3 through 99:

begin
 real a, b;

 for a := 3 step 2 until 99 do
 begin
 b := a × a × a;
 print (‘The cube of ‘, a, ‘ is ‘, b);
 end
end

The for statement initially sets the variable a to 3 and executes the block
following the for statement. Then a is increased by the number following
the step keyword, which is 2. The new value of a, which is 5, is used to exe-
cute the block. The variable a will continue to be increased by 2. When it
exceeds 99, the for loop is completed.

Programming languages usually have a very strict syntax. In Algol 60, for
example, the keyword for can be followed by only one type of thing—a
variable name. In English, however, the word for can be followed by all sorts
of different words, such as example in the previous sentence. While compilers
aren’t simple programs to write, they’re obviously much easier than programs
that must interpret human languages.

Another important feature of most programming languages is the con-
ditional. This is a statement that causes another statement to execute only
if a particular condition is true. Here’s an example that uses the ALGOL
built-in function sqrt, which calculates a square root. The sqrt function
doesn’t work for negative numbers, so this program avoids that occurrence:

begin
 real a, b;

 print (‘Enter a number: ‘);
 read (a);

 if a < 0 then
 print (‘Sorry, the number was negative.’);
 else
 begin
 b = sqrt(a);
 print (‘The square root of ‘, a, ‘ is ‘, b);
 end
end

The left angle bracket (<) is a less than sign. If the user of this program types
in a number that is less than 0, the first print statement is executed. If not—
that is, if the number is greater than or equal to 0—the block containing the
other print statement is executed.

Languages High and Low 359

So far, the variables shown in the programs in this chapter store only one
value each. Often it’s convenient for the same variable to store many val-
ues. This is known as an array. An array is declared in an ALGOL program
like this:

real array a[1:100];

In this case, we’ve indicated that we want to use this variable to store 100
different floating-point values, called elements of the array. The first one is
referenced by a[1], the second by a[2], and the last by a[100]. The number
in brackets is called the index of the array.

This program calculates all the square roots of 1 through 100 and stores
them in an array. Then it prints them out:

begin
 real array a[1:100];
 integer i;

 for i := 1 step 1 until 100 do
 a[i] := sqrt(i);

 for i := 1 step 1 until 100 do
 print (‘The square root of ‘, i, ‘ is ‘, a[i]);
end

This program also shows an integer variable named i (which is a traditional
name for an integer variable because it’s the first letter of the word). In the
first for loop, each element of the array is assigned the square root of its
index. In the second for loop, these are printed out.

In addition to real and integer, variables can also be declared as Boolean.
(Remember George Boole from Chapter 10?) A Boolean variable has only
two possible values, which are true and false. I make use of a Boolean array
(and almost every other feature we’ve learned about so far) in the final pro-
gram of this chapter—a program that implements a famous algorithm for
finding prime numbers called the Sieve of Eratosthenes. Eratosthenes (circa
276–196 BCE) was the librarian of the legendary library at Alexandria and
is best remembered today for accurately calculating the circumference of the
earth.

Prime numbers are those whole numbers that are divisible without a re-
mainder only by themselves and 1. The first prime number is 2 (the only even
prime number), and the primes continue with 3, 5, 7, 11, 13, 17, and so forth.

Eratosthenes’ technique begins with a list of the positive whole numbers
beginning with 2. Because 2 is a prime number, cross out all the numbers
that are multiples of 2. (That’s all the even numbers except 2.) Those num-
bers aren’t primes. Because 3 is a prime number, cross out all the numbers
that are multiples of 3. We already know 4 isn’t a prime number because it
has been crossed out. The next prime is 5, so cross out all the multiples of
5. Continue in this way. What you have left are the prime numbers.

360 Chapter Twenty-Four

An ALGOL program to determine all the prime numbers through 10,000
can implement this algorithm by declaring a Boolean array with indices from
2 through 10,000:

begin
 Boolean array a[2:10000];
 integer i, j;

 for i := 2 step 1 until 10000 do
 a[i] := true;

 for i := 2 step 1 until 100 do
 if a[i] then
 for j := 2 step 1 until 10000 ÷ i do
 a[i × j] := false;

 for i := 2 step 1 until 10000 do
 if a[i] then
 print (i);
end

The first for loop sets all the array elements to the Boolean value true. Thus,
the program starts by assuming that all the numbers are prime. The second
for loop goes from 1 through 100 (the square root of 10,000). If the num-
ber is prime, which means that a[i] is true, another for loop sets all the
multiples of that number to false. Those numbers aren’t prime. The final
for loop prints out all the prime numbers, which are the values of i where
a[i] is true.

Sometimes people squabble over whether programming is an art or a
science. On the one hand, you have college curricula in Computer Science,
and on the other hand, you have books such as Donald Knuth’s famous The
Art of Computer Programming series. “Rather,” wrote physicist Richard
Feynman, “computer science is like engineering—it is all about getting some-
thing to do something.”

If you ask 100 different people to write a program that prints out prime
numbers, you’ll get 100 different solutions. Even those programmers who
use the Sieve of Eratosthenes won’t implement it in precisely the same way
that I did. If programming truly were a science, there wouldn’t be so many
possible solutions, and incorrect solutions would be more obvious. Occa-
sionally, a programming problem incites flashes of creativity and insight, and
that’s the “art” part. But programming is mostly a designing and building
process not unlike erecting a bridge.

Many of the early programmers were scientists and engineers who could
be expected to formulate their problems in the mathematical algorithms
required by FORTRAN and ALGOL. Throughout the history of program-
ming languages, however, people have tried creating languages that could
be used by a wider range of people.

Languages High and Low 361

One of the first successful languages designed for businesspeople and
business problems was COBOL (the COmmon Business Oriented Language),
still widely used today. A committee that combined American industries and
the defense department created COBOL beginning in 1959, influenced by
Grace Hopper’s early compilers. In part, COBOL was designed so that
managers, while probably not doing the actual coding, could at least read
the program code and check that it was doing what it was supposed to be
doing. (In real life, however, this rarely occurs.)

COBOL has extensive support for reading records and generating reports.
Records are collections of information organized in a consistent manner. For
example, an insurance company might maintain large files containing in-
formation on all the policies it has sold. Each policy would be a separate
record. The record would include the person’s name, a birth date, and other
information. Many early COBOL programs were written to deal with 80-
column records stored on IBM punch cards. To use as little space as possible
on these cards, calendar years were often coded as two digits rather than four,
leading to the most common (but least publicized) instances of the infamous
“millennium bug” as the year 2000 approached.

In the mid-1960s, IBM, in connection with its System/360 project, devel-
oped a language named PL/I. (The I is actually a Roman numeral and pro-
nounced one, so PL/I really stands for Programming Language Number One.)
PL/I was intended to incorporate the block structure of ALGOL, the scien-
tific and mathematics functions of FORTRAN, and the record and report
capabilities of COBOL. But the language never quite achieved the popular-
ity of FORTRAN and COBOL.

Although versions of FORTRAN, ALGOL, COBOL, and PL/I were avail-
able for home computers, none of them had quite the impact on small ma-
chines that BASIC had.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was developed
in 1964 by John Kemeny and Thomas Kurtz, of the Dartmouth Mathemat-
ics Department, in connection with Dartmouth’s time-sharing system. Most
students at Dartmouth weren’t math or engineering majors and hence
couldn’t be expected to mess around with punch cards and difficult program
syntax. A Dartmouth student sitting at a terminal could create a BASIC
program by simply typing BASIC statements preceded by numbers. The
numbers indicated the order of the statements in the program. Statements
not preceded by numbers were commands to the system such as SAVE (save
the BASIC program to disk), LIST (display the lines in order), and RUN
(compile and run the program). The first BASIC program in the first pub-
lished BASIC instruction manual was

10 LET X = (7 + 8) / 3
20 PRINT X
30 END

362 Chapter Twenty-Four

Unlike ALGOL, BASIC didn’t require the programmer to specify whether
a variable was to be stored as an integer or a floating-point value. Most num-
bers were stored as floating-point values without the programmer needing
to worry about it.

Many subsequent implementations of BASIC have been in the form of
interpreters rather than compilers. As I explained earlier, a compiler reads
a source-code file and creates an executable file. An interpreter, however,
reads source code and executes it directly as it’s reading it without creating
an executable file. Interpreters are easier to write than compilers, but the
execution time of the interpreted program tends to be slower than that of a
compiled program. On home computers, BASIC got an early start when bud-
dies Bill Gates (born 1955) and Paul Allen (born 1953) wrote a BASIC in-
terpreter for the Altair 8800 in 1975 and jump-started their company,
Microsoft Corporation.

The Pascal programming language, which inherited much of its structure
from ALGOL but included record handling from COBOL, was designed in
the late 1960s by Swiss computer science professor Niklaus Wirth (born
1934). Pascal was quite popular for IBM PC programmers, but in a very
specific form—the product Turbo Pascal, introduced by Borland Interna-
tional in 1983 for the bargain price of $49.95. Turbo Pascal (written by
Danish student Anders Hejlsberg, born in 1960) was a version of Pascal that
came complete with an integrated development environment. The text edi-
tor and the compiler were combined in a single program that facilitated very
fast programming. Integrated development environments had been popular
on large mainframe computers, but Turbo Pascal heralded their arrival on
small machines.

Pascal was also a major influence on Ada, a language developed for use
by the United States Department of Defense. The language was named af-
ter Augusta Ada Byron, whom I mentioned in Chapter 18 as the chronicler
of Charles Babbage’s Analytical Engine.

And then there’s C, a much-beloved programming language created be-
tween 1969 and 1973 largely by Dennis M. Ritchie at Bell Telephone Labo-
ratories. People often ask why the language is called C. The simple answer
is that it was derived from an early language called B, which was a simpli-
fied version of BCPL (Basic CPL), which was derived from CPL (Combined
Programming Language).

I mentioned in Chapter 22 that the UNIX operating system was designed
to be portable. Most operating systems at the time were written in assem-
bly language for a specific processor. In 1973, UNIX was written (or rather,
rewritten) in C, and since then the operating system and the language have
been closely identified.

C is generally a very terse language. For example, instead of the words
begin and end used in ALGOL and Pascal to delimit blocks, C uses the curly
braces { and }. Here’s another example. It’s very common for a programmer
to add a constant amount to a variable:

i = i + 5;

Languages High and Low 363

In C, you can shorten this to

i += 5;

If you only need to add 1 to the variable (that is, to increment it), you can
shorten the statement even further:

i++;

On 16-bit or 32-bit microprocessors, such a statement can be carried out by
a single machine-code instruction.

I mentioned earlier that most high-level languages don’t include bit-
shifting operations or Boolean operations on bits, which are features sup-
ported by many processors. C is the exception to this rule. In addition, an
important feature of C is its support of pointers, which are essentially nu-
meric memory addresses. Because C has operations that parallel many com-
mon processor instructions, C is sometimes categorized as a high-level
assembly language. More than any ALGOL-like language, C closely mimics
common processor instruction sets.

Yet all ALGOL-like languages—which really means most commonly used
programming languages—were designed based on von Neumann architec-
ture computers. Breaking out of the von Neumann mind-set when designing
a computer language isn’t easy, and getting other people to use such a lan-
guage is even harder. One such non–von Neumann language is LISP (which
stands for List Processing), which was designed by John McCarthy in the
late 1950s and is useful for work in the field of artificial intelligence. An-
other language that’s just as unusual but nothing like LISP is APL (A Pro-
gramming Language), developed in the late 1950s by Kenneth Iverson. APL
uses a collection of odd symbols that perform operations on whole arrays
of numbers at once.

While ALGOL-like languages have retained their dominance, in recent
years they’ve picked up certain enhancements that have resulted in what are
called object-oriented languages. These languages are useful for working with
the graphical operating systems that I’ll describe in the next (and last) chapter.

364

Chapter Twenty-Five

The Graphical
Revolution

eaders of the September 10, 1945, issue of Life magazine encoun-
tered mostly the usual eclectic mix of articles and photographs:
stories about the end of the Second World War, an account of dancer

Vaslav Nijinsky’s life in Vienna, a photo essay on the United Auto Workers.
Also included in that issue was something unexpected: a provocative article
by Vannevar Bush (1890–1974) about the future of scientific research. Van
Bush (as he was called) had already made his mark in the history of com-
puting by designing one of the most significant analog computers—the dif-
ferential analyzer—between 1927 and 1931 while an engineering professor
at MIT. At the time of the Life article in 1945, Bush was serving as Direc-
tor of the Office of Scientific Research and Development, which had been
responsible for coordinating U.S. scientific activities during the war, including
the Manhattan Project.

Condensed somewhat from its first appearance two months earlier in The
Atlantic Monthly, Bush’s Life article “As We May Think” described some
hypothetical inventions of the future ostensibly for the scientist and re-
searcher who must deal with an ever-increasing number of technical jour-
nals and articles. Bush saw microfilm as the solution and imagined a device
he called the Memex to store books, articles, records, and pictures inside a
desk. The Memex also allowed the user to establish thematic connections
among these works, according to the associations normally made by the hu-
man mind. He even imagined a new professional group of people who would
forge these trails of association through massive bodies of information.

R

The Graphical Revolution 365

Although articles about the delights of the future have been common
throughout the twentieth century, “As We May Think” is different. This isn’t
a story about household laborsaving devices or futuristic transportation or
robots. This is a story about information and how new technology can help
us successfully deal with it.

Through the six and a half decades since the first relay calculators were
built, computers have become smaller, faster, and cheaper all at the same
time. This trend has changed the very nature of computing. As computers
get cheaper, each person can have his or her own. As computers get smaller
and faster, software can become more sophisticated and the machines can
assume more and more work.

One way in which this extra power and speed can be put to good use is
in improving the most crucial part of the computer system, which is the user
interface—the point at which human and computer meet. People and com-
puters are very different animals, and unfortunately it’s easier to persuade
people to make adjustments to accommodate the peculiarities of comput-
ers than the other way around.

In the early days, digital computers weren’t interactive at all. Some of them
were programmed using switches and cables, while others used punched
paper tape or film. By the 1950s and 1960s (and even continuing into the
1970s), computers had evolved to the point where batch processing was the
norm: Programs and data were punched on cards, which were then read into
computer memory. The program analyzed the data, drew some conclusions,
and printed the results on paper.

The earliest interactive computers used teletypewriters. Setups such as the
Dartmouth time-sharing system (dating from the early 1960s) that I described
in the preceding chapter supported multiple teletypewriters that could be
used at the same time. In such a system, a user types a line at the teletype-
writer, and the computer replies with one or more lines in response. The
exchange of information between teletypewriter and computer consists
entirely of streams of ASCII (or another character set), which are almost
entirely character codes with some simple control codes, such as the carriage
return and linefeed. The transaction proceeds only in one direction down
the roll of paper.

The cathode-ray tube (which became more common during the 1970s)
shouldn’t have such restrictions, however. Software can instead treat the
entire screen in a more flexible manner—as a two-dimensional platform for
information. Yet, possibly in an attempt to keep the display output logic of
an operating system generalized, much early software written for small
computers continued to treat the CRT as a “glass teletypewriter”—displaying
output line by line going down the screen and scrolling the contents of the
screen up when the text reached the bottom. All the utilities in CP/M and
most utilities in MS-DOS used the video display in a teletypewriter mode.
Perhaps the archetypal teletypewriter operating system is UNIX, which still
proudly upholds that tradition.

366 Chapter Twenty-Five

Interestingly enough, the ASCII character set isn’t entirely inadequate in
dealing with the cathode-ray tube. When ASCII was originally designed, the
code 1Bh was labeled Escape and was specifically intended for handling
extensions of the character set. In 1979, the American National Standards
Institute (ANSI) published a standard entitled “Additional Controls for Use
with American National Standard Code for Information Interchange.” The
purpose of this standard was “to accommodate the foreseeable needs for
input/output control of two-dimensional character-imaging devices, includ-
ing interactive terminals of both the cathode ray tube and printer types…”

Of course, the Escape code 1Bh is just 1 byte and can mean only one thing.
The Escape code works by prefacing variable-length sequences that perform
a variety of functions. For example, the sequence

1Bh 5Bh 32h 4Ah

which is the Escape code followed by the characters [2J, is defined to erase
the entire screen and move the cursor to the upper left corner. This isn’t
something that can be done on a teletypewriter. The sequence

1Bh 5Bh 35h 3Bh 32h 39h 48h

which is the Escape code followed by the characters [5;29H, moves the cursor
to row 5 and column 29.

A combined keyboard and CRT that responds to ASCII codes (and pos-
sibly to a collection of Escape sequences) coming from a remote computer
is sometimes called a dumb terminal. Such terminals are faster than teletype-
writers and somewhat more flexible, but they’re not quite fast enough for
real innovations in the user interface. Such innovations came with small com-
puters in the 1970s that—like the hypothetical computer we built in Chap-
ter 21—included the video display memory as part of the microprocessor’s
address space.

The first indication that home computers were going to be much differ-
ent from their larger and more expensive cousins was probably the appli-
cation VisiCalc. Designed and programmed by Dan Bricklin (born 1951) and
Bob Frankston (born 1949) and introduced in 1979 for the Apple II, VisiCalc
used the screen to give the user a two-dimensional view of a spreadsheet.
Prior to VisiCalc, a spreadsheet (or worksheet) was a piece of paper with
rows and columns generally used for doing series of calculations. VisiCalc
replaced the paper with the video display, allowing the user to move around
the spreadsheet, enter numbers and formulas, and recalculate everything after
a change.

What was amazing about VisiCalc is that it was an application that could
not be duplicated on larger computers. A program such as VisiCalc needs
to update the screen very quickly. For this reason, it wrote directly to the
random access memory used for the Apple II’s video display. This memory
is part of the address space of the microprocessor. The interface between a
large time-shared computer and a dumb terminal is simply not fast enough
to make a spreadsheet program usable.

The faster a computer can respond to the keyboard and alter the video
display, the tighter the potential interaction between user and computer. Most

The Graphical Revolution 367

of the software written in the first decade of the IBM Personal Computer
(through the 1980s) wrote directly to video display memory. Because IBM
set a hardware standard that other computer manufacturers adhered to,
software manufacturers could bypass the operating system and use the hard-
ware directly without fear that their programs wouldn’t run right (or at all)
on some machines. If all the PC clones had different hardware interfaces to
their video displays, it would have been too difficult for software manufac-
turers to accommodate all the different designs.

For the most part, early applications for the IBM PC used only text out-
put and not graphics. The use of text output also helped the applications run
as fast as possible. When a video display is designed like the one described
in Chapter 21, a program can display a particular character on the screen
by simply writing the character’s ASCII code into memory. A program us-
ing a graphical video display usually needs to write 8 or more bytes into
memory to draw the image of the text character.

The move from character displays to graphics was, however, an extremely
important step in the evolution of computers. Yet the development of com-
puter hardware and software that work with graphical images rather than
just text and numbers evolved very slowly. As early as 1945, John von
Neumann envisioned an oscilloscope-like display that could graph pictorial
information. But it wasn’t until the early 1950s that computer graphics were
ready to become a reality when MIT (with help from IBM) set up the Lin-
coln Laboratory to develop computers for the Air Force’s air defense system.
This project was known as SAGE (Semi-Automatic Ground Environment)
and included graphics display screens to help the operators analyze large
amounts of data.

The early video displays used in systems such as SAGE weren’t like those
we use today on personal computers. Today’s common PC displays are
known as raster displays. Much like a TV, the total image is composed of a
series of horizontal raster lines drawn by an electron gun shooting a beam
that moves very rapidly back and forth across the screen. The screen can be
visualized as a large rectangular array of dots called pixels (picture elements).
Within the computer, a block of memory is devoted to the video display and
contains 1 or more bits for each pixel on the screen. The values of these bits
determine whether pixels are illuminated and what color they are.

For example, most computer displays nowadays have a resolution of at
least 640 pixels horizontally and 480 pixels vertically. The total number
of pixels is the product of these two numbers: 307,200. If only 1 bit of
memory is devoted to each pixel, each pixel is limited to just two col-
ors, usually black and white. A 0 pixel could be black and a 1 pixel could
be white, for example. Such a video display requires 307,200 bits of
memory, or 38,400 bytes.

Increasing the number of possible colors necessitates more bits per pixel
and increases the memory requirements of the display adapter. For example,
a byte could be used for each pixel to encode gray shades. In such an arrange-
ment, the byte 00h is black, FFh is white, and the values in between are
shades of gray.

368 Chapter Twenty-Five

Color on a CRT is achieved by means of three electron guns, one for each
of the three additive primary colors, red, green, and blue. (You can exam-
ine a television or color computer screen with a magnifying glass to convince
yourself that this is true. Printing uses a different set of primaries.) The combi-
nation of red and green is yellow, the combination of red and blue is ma-
genta, the combination of green and blue is cyan, and the combination of
all three primary colors is white.

The simplest type of color graphics display adapter requires 3 bits per
pixel. The pixels could be encoded like this with 1 bit per primary color:

Bits Color
000 Black
001 Blue
010 Green
011 Cyan
100 Red
101 Magenta
110 Yellow
111 White

But such a scheme would be suitable only for simple cartoonlike images.
Most real-world colors are combinations of various levels of red, green, and
blue. If you were willing to devote 2 bytes per pixel, you could allocate 5
bits for each primary color (with 1 bit left over). That gives you 32 levels
of red, green, and blue and a total of 32,768 different colors. This scheme
is often referred to as high color or thousands of colors.

The next step is to use 3 bytes per pixel, or 1 byte for each primary. This
encoding scheme results in 256 levels of red, green, and blue for a total of
16,777,216 different colors, often referred to as full color or millions of
colors. If the resolution of the video display is 640 pixels horizontally by 480
pixels vertically, the total amount of memory required is 921,600 bytes, or
nearly a megabyte.

The number of bits per pixel is sometimes referred to as the color depth
or color resolution. The number of different colors is related to the number
of bits per pixel in this way:

Number of colors = 2Number of bits per pixel

A video adapter board has only a certain amount of memory, so it’s limited
in the combinations of resolutions and color depths that are possible. For
example, a video adapter board that has a megabyte of memory can do a
640-by-480 resolution with 3 bytes per pixel. But if you want to use a reso-
lution of 800 by 600, there’s not enough memory for 3 bytes per pixel. In-
stead, you’ll need to use 2 bytes per pixel.

Although raster displays seem very natural to us now, in the early days
they were not quite practical because they required what was then a great
deal of memory. Instead, the SAGE video displays were vector displays,
more like an oscilloscope than a TV. The electron gun could be electrically

The Graphical Revolution 369

positioned to point to any part of the display and draw lines and curves di-
rectly. The persistence of the image on the screen allowed assembling these
lines and curves into rudimentary pictures.

The SAGE computers also supported light pens that let the operators alter
images on the display. Light pens are peculiar devices that look like a sty-
lus with a wire attached to one end. If the proper software is running, the
computer can detect where the light pen is pointing on the screen and alter
an image in response to the pen’s movements.

How does this work? Even technological sophisticates are sometimes
puzzled when they first encounter a light pen. The key is that a light pen
doesn’t emit light—it detects light. The circuitry that controls the movements
of the electron gun in the CRT (regardless of whether a raster or vector dis-
play is used) can also determine when the light from the electron gun hits
the light pen and hence where the light pen is pointing on the screen.

One of the first people to envision a new era of interactive computing
was Ivan Sutherland (born 1938), who in 1963 demonstrated a revolution-
ary graphics program he had developed for the SAGE computers named
Sketchpad. Sketchpad could store image descriptions in memory and display
the images on the video display. In addition, you could use the light pen to
draw images on the display and change them, and the computer would keep
track of it all.

Another early visionary of interactive computing was Douglas Engelbart
(born 1925), who read Vannevar Bush’s article “As We May Think” when
it was published in 1945 and five years later began a lifetime of work de-
veloping new ideas in computer interfaces. In the mid-1960s, while at the
Sanford Research Institute, Engelbart completely rethought input devices and
came up with a five-pronged keyboard for entering commands (which never
caught on) and a smaller device with wheels and a button that he called a
mouse. The mouse is now almost universally accepted for moving a pointer
around the screen to select on-screen objects.

Many of the early enthusiasts of interactive graphical computing (although
not Engelbart) came together at Xerox, fortunately at a time when raster
displays became economically feasible. Xerox had founded the Palo Alto
Research Center (PARC) in 1970 in part to help develop products that would
allow the company to enter the computer industry. Perhaps the most famous
visionary at PARC was Alan Kay (born 1940), who encountered Van Bush’s
microfilm library (in a short story by Robert Heinlein) when he was 14, and
who had already conceived of a portable computer he called the Dynabook.

The first big project at PARC was the Alto, designed and built between
1972 and 1973. By the standards of those years, it was an impressive piece
of work. The floor-standing system unit had 16-bit processing, two 3-MB
disk drives, 128 KB of memory (expandable to 512 KB), and a mouse with
three buttons. Because the Alto preceded the availability of 16-bit single-chip
microprocessors, the Alto processor had to be built from about 200 inte-
grated circuits.

370 Chapter Twenty-Five

The video display was one of the several unusual aspects of the Alto. The
screen was approximately the size and shape of a sheet of paper—8 inches
wide and 10 inches high. It ran in a raster graphics mode with 606 pixels
horizontally by 808 pixels vertically, for a total of 489,648 pixels. One bit
of memory was devoted to each pixel, which meant that each pixel could
be either black or white. The total amount of memory devoted to the video
display was 64 KB, which was part of the address space of the processor.

By writing into this video display memory, software could draw pictures
on the screen or display text in different fonts and sizes. By rolling the mouse
on the desk, the user of the Alto could position a pointer on the screen and
interact with on-screen objects. Rather than treating the video display in the
same way as the teletypewriter—linearly echoing user input and writing out
program output—the screen became a two-dimensional high-density array
of information and a more direct source of user input.

Over the remainder of the 1970s, programs written for the Alto devel-
oped some very interesting characteristics. Multiple programs were put into
windows and displayed on the same screen simultaneously. The video graph-
ics of the Alto allowed software to go beyond text and truly mirror the user’s
imagination. Graphical objects (such as buttons and menus and little pic-
tures called icons) became part of the user interface. The mouse was used
for selecting windows or triggering the graphical objects to perform program
functions.

This was software that went beyond the user interface into user intimacy,
software that facilitated the extension of the computer into realms beyond
those of simple number crunching. This was software that was designed—
to quote the title of a legendary paper written by Douglas Engelbart in
1963—“for the Augmentation of Man’s Intellect.”

What PARC developed in the Alto was the beginnings of the graphical
user interface, or GUI (pronounced gooey). But Xerox didn’t sell the Alto (one
would have cost over $30,000 if they had), and over a decade passed before
the ideas in the Alto would be embodied in a successful consumer product.

In 1979, Steve Jobs and a contingent from Apple Computer visited PARC
and were quite impressed with what they saw. But it took them over three
years to introduce a computer that had a graphical interface. This was the
ill-fated Apple Lisa in January 1983. A year later, however, Apple introduced
the much more successful Macintosh.

The original Macintosh had a Motorola 68000 microprocessor, 64 KB
of ROM, 128 KB of RAM, a 31⁄2-inch diskette drive (storing 400 KB per dis-
kette), a keyboard, a mouse, and a video display capable of displaying 512
pixels horizontally by 342 pixels vertically. (The CRT itself measured only 9
inches diagonally.) That’s a total of 175,104 pixels. Each pixel was associ-
ated with 1 bit of memory and could be colored either black or white, so
about 22 KB were required for the video display RAM.

The hardware of the original Macintosh was elegant but hardly revolu-
tionary. What made the Mac so different from other computers available in
1984 was the Macintosh operating system, generally referred to as the sys-
tem software at the time and later known as the Mac OS.

The Graphical Revolution 371

A text-based single-user operating system such as CP/M or MS-DOS isn’t
very large and doesn’t have an extensive application programming interface
(API). As I explained in Chapter 22, mostly what’s required in these text-
based operating systems is a way for applications to use the file system. A
graphical operating system such as the Mac OS, however, is much larger
and has hundreds of API functions. Each of them is identified by a name that
describes what the function does.

While a text-based operating system such as MS-DOS provides a couple
of simple API functions to let application programs display text on the screen
in a teletypewriter manner, a graphical operating system such as the Mac OS
must provide a way for programs to display graphics on the screen. In theory,
this can be accomplished by implementing a single API function that lets an
application set the color of a pixel at a particular horizontal and vertical
coordinate. But it turns out that this is inefficient and results in very slow
graphics.

It makes more sense for the operating system to provide a complete graph-
ics programming system, which means that the operating system includes
API functions to draw lines, rectangles, and ellipses (including circles) as well
as text. Lines can be either solid or composed of dashes or dots. Rectangles
and ellipses can be filled with various patterns. Text can be displayed in
various fonts and sizes and with effects such as boldfacing and underlining.
The graphics system is responsible for determining how to render these
graphical objects as a collection of dots on the display.

Programs running under a graphical operating system use the same APIs
to draw graphics on both the computer’s video display and the printer. A
word processing application can thus display a document on the screen so
that it looks very similar to the document later printed, a feature known as
WYSIWYG (pronounced wizzy wig). This is an acronym for “What you see
is what you get,” the contribution to computer lingo of the comedian Flip
Wilson in his Geraldine persona.

Part of the appeal of a graphical user interface is that different appli-
cations work roughly the same and leverage a user’s experience. This means
that the operating system must also support API functions that let appli-
cations implement the various components of the user interface, such as
buttons and menus. Although the GUI is generally viewed as an easy
environment for users, it’s also just as importantly an environment for pro-
grammers. Programmers can implement a modern user interface without re-
inventing the wheel.

Even before the introduction of the Macintosh, several companies had
begun to create a graphical operating system for the IBM PC and com-
patibles. In one sense, the Apple developers had an easier job because they
were designing the hardware and software together. The Macintosh system
software had to support only one type of diskette drive, one type of video
display, and two printers. Implementing a graphical operating system for the
PC, however, required supporting many different pieces of hardware.

372 Chapter Twenty-Five

Moreover, although the IBM PC had been introduced just a few years
earlier (in 1981), many people had grown accustomed to using their favor-
ite MS-DOS applications and weren’t ready to give them up. It was con-
sidered very important for a graphical operating system for the PC to run
MS-DOS applications as well as applications designed expressly for the new
operating system. (The Macintosh didn’t run Apple II software primarily
because it used a different microprocessor.)

In 1985, Digital Research (the company behind CP/M) introduced GEM
(the Graphical Environment Manager), VisiCorp (the company marketing
VisiCalc) introduced VisiOn, and Microsoft released Windows version 1.0,
which was quickly perceived as being the probable winner in the “windows
wars.” It wasn’t until the May 1990 release of Windows 3.0, however, that
Windows began to attract a lot of users. Its popularity has increased since
then, and today Windows is the operating system used on about 90 percent
of small computers. Despite the similar appearances of the Macintosh and
Windows, the APIs for the two systems are very different.

In theory, aside from the graphics display, a graphical operating system
doesn’t require much more in the way of hardware than a text-based operat-
ing system. In theory, not even a hard disk drive is required: The original
Macintosh didn’t have one, and Windows 1.0 didn’t require one. Win-
dows 1.0 didn’t even require a mouse, although everyone agreed that it was
much easier to use with a mouse.

Still, however, it’s not surprising that graphical user interfaces have be-
come more popular as microprocessors have grown faster and as memory
and storage have become more plentiful. As more and more features are
added to graphical operating systems, they have grown large. Today’s graphi-
cal operating systems generally require a couple hundred megabytes of hard
disk space and upwards of 32 megabytes of memory.

Applications for graphical operating systems are almost never written in
assembly language. In the early days, the popular language for Macintosh
applications was Pascal. For Windows applications, it was C. But once again,
PARC had demonstrated a different approach. Beginning about 1972, the
researchers at PARC were developing a language named Smalltalk that
embodied the concept of object-oriented programming, or OOP (pro-
nounced oop).

Traditionally, high-level programming languages differentiate between
code (which is statements generally beginning with a keyword such as set
or for or if) and data, which is numbers represented by variables. This dis-
tinction no doubt originates from the architecture of von Neumann comput-
ers, in which something is either machine code or is data acted upon by
machine code.

In object-oriented programming, however, an object is a combination of
code and data. The actual way in which the data in an object is stored is
understood only by code associated with the object. Objects communicate
with one another by sending and receiving messages, which give instructions
to an object or ask for information from it.

The Graphical Revolution 373

Object-oriented languages are often helpful for programming applications
for graphical operating systems because the programmer can treat objects
on the screen (such as windows and buttons) in much the same way that a
user perceives them. A button is an example of an object in an object-
oriented language. A button has a certain dimension and position on the
screen and displays some text or a little picture, all of which is data associ-
ated with the object. Code associated with the object determines when the
user “presses” the button with the keyboard or the mouse and sends a mes-
sage indicating the button has been triggered.

The most popular object-oriented languages for small computers, how-
ever, are extensions of traditional ALGOL-like languages, such as C and Pas-
cal. The most popular object-oriented extension of C is called C++. (As you
might recall, two plus signs in C is an increment operator.) Largely the brain-
child of Bjarne Stroustrup (born 1950) of Bell Telephone Laboratories, C++
was implemented first as a translator that converted a program written in
C++ to one written in C (although very ugly and virtually unreadable C).
The C program could then be compiled normally.

Object-oriented languages can’t do anything more than traditional lan-
guages can do, of course. But programming is a problem-solving activity, and
object-oriented languages allow the programmer to consider different solu-
tions that are often structurally superior. It’s also possible—although not
exactly easy—to write a single program using an object-oriented language
that can be compiled to run either on the Macintosh or under Windows.
Such a program doesn’t refer to the APIs directly but rather uses objects
that in turn call the API functions. Two different object definitions are used
to compile the program for the Macintosh or Windows API.

Most programmers working on small computers no longer run a compiler
from a command line. Instead, programmers use an integrated development
environment (IDE), which combines all the tools they need in one convenient
program that runs like other graphical applications. Programmers also take
advantage of a technique called visual programming, in which windows are
designed interactively by using the mouse to assemble buttons and other
components.

In Chapter 22, I described text files, which are files that contain only ASCII
characters and which are readable by human beings like you and me. Back
in the days of text-based operating systems, text files were ideal to exchange
information among applications. One big advantage of text files is that
they’re searchable—that is, a program can look at many text files and de-
termine which of them contains a particular text string. But once you have
a facility in the operating system to display text using various fonts and sizes
and effects such as italics, boldfacing, and underlining, the text file suddenly
seems woefully inadequate. Indeed, most word processing programs save
documents in a proprietary binary format. Text files are also not suitable for
pictorial information.

But it’s possible to encode information (such as font specifications and
paragraph layout) along with text and still have a readable text file. The

374 Chapter Twenty-Five

key is to choose an escape character to denote this information. In the Rich
Text Format (RTF) designed by Microsoft as a means to exchange format-
ted text among applications, the curly brackets { and } and the backslash char-
acter \ are used to enclose information that indicates how the text is to be
formatted.

PostScript is a text file format that takes this concept to extremes. De-
signed by John Warnock (born 1940), cofounder of Adobe Systems, PostScript
is an entire general-purpose graphics programming language used today
mostly to draw text and graphics on high-end computer printers.

The incorporation of graphical images into the personal computing en-
vironment is the direct result of better and cheaper hardware. As micropro-
cessors have become faster, as memory has become cheaper, as video displays
and printers have increased in resolution and blossomed in full color, that
power has been exploited through computer graphics.

Computer graphics comes in two flavors, which are referred to by the
same words I used earlier to differentiate graphical video displays: vector
and raster.

Vector graphics involves creating images algorithmically using straight
lines, curves, and filled areas. This is the province of the computer-assisted
drawing (or CAD) program. Vector graphics finds its most important ap-
plication in engineering and architectural design. A vector graphics image
can be stored in a file in a format referred to as a metafile. A metafile is
simply a collection of vector graphics drawing commands usually encoded
in binary form.

The use of lines, curves, and filled areas of vector graphics is entirely
appropriate when you’re designing a bridge but hopelessly inadequate when
you want to show what the actual constructed bridge looks like. That bridge
is a real-world image. It’s simply too complex to be represented by vector
graphics.

Raster graphics (also known as bitmap graphics) comes to the rescue. A
bitmap encodes an image as a rectangular array of bits that correspond to the
pixels of an output device. Just like a video display, a bitmap has a spatial
dimension (or resolution), which is the width and height of the image in pix-
els. Bitmaps also have a color dimension (or color resolution, or color depth),
which is the number of bits associated with each pixel. Each pixel in a bit-
map has the same number of bits.

Although a bitmap image is two dimensional, the bitmap itself is just a
single stream of bytes—usually the top row of pixels, followed by the sec-
ond row, followed by the third row, and so on.

Some bitmap images are created “manually” by someone using a paint
program designed for a graphical operating system. Other bitmap images
are created algorithmically by computer code. These days, however, bitmaps
are very often used for images from the real world (such as photographs),
and there are several different pieces of hardware that allow you to move
images from the real world into the computer. These devices generally use
something called a charge-coupled device (CCD), which is a semiconductor

The Graphical Revolution 375

that releases an electrical charge when exposed to light. One CCD cell is
required for each pixel to be sampled.

The scanner is the oldest of these devices. Much like a photocopy machine,
it uses a row of CCDs that sweep along the surface of a printed image, such
as a photograph. The CCDs generate electrical charges based on the inten-
sity of light. Software that works with the scanner translates the image into
a bitmap that’s stored in a file.

Video camcorders use a two-dimensional array of CCD cells to capture
images. Generally these images are recorded on videotape. But the video out-
put might be fed directly into a video frame grabber, which is a board that
converts an analog video signal to an array of pixel values. These frame
grabbers can be used with any common video source, such as that from a
VCR or a laser disc player, or even directly from a cable television box.

Most recently, digital cameras have become financially viable for the home
user. These often look very much like normal cameras. But instead of film,
an array of CCDs is used to capture an image that’s stored directly in memory
within the camera and later transferred into the computer.

A graphical operating system often supports the storage of bitmaps in files
in a particular format. The Macintosh uses the Paint format, the name of
which is a reference to the MacPaint program that inaugurated the format.
(The Macintosh PICT format that combines bitmaps and vector graphics is
actually the preferred format.) In Windows, the native format is referred to
as BMP, which is the filename extension used for bitmaps.

Bitmaps can be quite large, and it’s beneficial to figure out some way to
make them smaller. This effort falls under an area of computer science known
as data compression.

Suppose we were dealing with an image with 3 bits per pixel such as I
described earlier. You have a picture of sky and a house and a lawn. This
picture probably has large patches of blue and green. Maybe the very top
row of the bitmap has 72 blue pixels in a row. The bitmap file could be made
smaller if there were some way to actually encode the number 72 in the file
to mean that the blue pixel repeats 72 times. This type of compression is
known as run-length encoding, or RLE.

The common office fax machine uses RLE compression to reduce the size
of an image before sending it over the telephone line. Because a fax inter-
prets an image as black and white with no gray shades or colors, there are
generally long stretches of white pixels.

A bitmap file format that’s been popular for over a decade is the Graph-
ics Interchange Format, or GIF (pronounced jif like the peanut butter), de-
veloped by CompuServe in 1987. GIF files use a compression technique called
LZW, which stands for its creators, Lempel, Ziv, and Welch. LZW is more
powerful than RLE because it detects patterns of differently valued pixels
rather than just consecutive strings of same-value pixels.

Both RLE and LZW are referred to as lossless compression techniques
because the original file can be entirely re-created from the compressed data.
In other words, the compression is reversible. It’s fairly easy to prove that

376 Chapter Twenty-Five

reversible compression doesn’t work for every type of file. In some cases, the
“compressed” file is actually larger than the original file!

In recent years, lossy compression techniques have become popular. A
lossy compression isn’t reversible because some of the original data is effec-
tively discarded. You wouldn’t want to use lossy compression on your spread-
sheets or word processing documents. Presumably every number and word
is important. But you probably wouldn’t mind lossy compression for images,
just as long as the data that’s discarded doesn’t make much of a difference
in the overall picture. That’s why lossy compression techniques are based
on psychovisual research that investigates human vision to determine what’s
important and what’s not.

The most significant lossy compression techniques used for bitmaps are
collectively referred to as JPEG (pronounced jay peg). JPEG stands for the
Joint Photography Experts Group and actually describes several compres-
sion techniques, some lossless and some lossy.

It’s fairly straightforward to convert a metafile to a bitmap. Because video
display memory and bitmaps are conceptually identical, if a program knows
how to draw a metafile in video display memory, it knows how to draw a
metafile on a bitmap.

But converting a bitmap to a metafile isn’t so easy, and for some complex
images might well be impossible. One technique related to this job is opti-
cal character recognition, or OCR. OCR is used when you have a bitmap
of some text (from a fax machine, perhaps, or scanned from typed pages)
and need to convert it to ASCII character codes. The OCR software needs
to analyze the patterns of bits and determine what characters they represent.
Due to the algorithmic complexity of this job, OCR software is usually not
100 percent accurate. Even less accurate is software that attempts to con-
vert handwriting to ASCII text.

Bitmaps and metafiles are the digital representations of visual informa-
tion. Audio information can also be converted to bits and bytes.

Digitized sound made a big consumer splash in 1983 with the compact
disc, which became the biggest consumer electronics success story ever. The
CD was developed by Philips and Sony to store 74 minutes of digitized sound
on one side of a disk 12 centimeters in diameter. The length of 74 minutes
was chosen so that Beethoven’s Ninth Symphony could fit on one CD.

Sound is encoded on a CD using a technique called pulse code modula-
tion, or PCM. Despite the fancy name, PCM is conceptually a fairly simple
process.

Sound is vibration. Human vocal cords vibrate, a tuba vibrates, a tree
falling in a forest vibrates, and these objects cause air molecules to move.
The air alternately pushes and pulls, compresses and thins, back and forth
some hundreds of times or thousands of times a second. The air in turn vi-
brates our eardrums, and we sense sound.

Analogous to these waves of sound are the little hills and valleys in
the surface of the tin foil cylinder used to record and play back sound
in Thomas Edison’s first phonograph in 1877. Until the compact disc, this

The Graphical Revolution 377

technique of recording sound barely changed, although cylinders were re-
placed by disks, and tin foil by wax and eventually plastic. Early phono-
graphs were entirely mechanical, but eventually electrical amplification was
used to strengthen the sound. The variable resistor in a microphone converts
sound to electricity, and the electromagnet in a loudspeaker converts elec-
tricity back to sound.

An electrical current that represents sound isn’t like the on-off digital
signals that we’ve encountered throughout this book. Sound waves vary
continuously, and so does the voltage of such a current. The electrical cur-
rent is an analog of the sound waves. A device known as an analog-to-
digital converter (ADC)—generally implemented in a chip—converts an
analog voltage to a binary number. The output of an ADC is a certain number
of digital signals—usually 8, 12, or 16—that together indicate the relative
level of the voltage. A 12-bit ADC, for example, converts a voltage to a
number between 000h and FFFh and can differentiate 4096 different volt-
age levels.

In the technique known as pulse code modulation, the voltage representing
a sound wave is converted to digital values at a constant rate. These num-
bers are stored on the CD in the form of little holes carved into the surface
of the disc. They’re read with a laser light reflected from the surface of the
CD. During playback, the numbers are converted to an electrical current
again using a digital-to-analog converter, or DAC. (A DAC is also used in
color graphics boards to convert a pixel value to analog color signals that
go to the monitor.)

The voltage of the sound wave is converted to numbers at a constant rate,
known as the sampling rate. In 1928, Harry Nyquist of Bell Telephone
Laboratories showed that a sampling rate must be at least twice the maxi-
mum frequency that needs to be recorded and played back. It’s commonly
assumed that humans hear sounds ranging from 20 Hz to 20,000 Hz. The
sampling frequency used for CDs is a bit more than double that maximum,
specifically 44,100 samples per second.

The number of bits per sample determines the dynamic range of the CD,
which is the difference between the loudest and the softest sound that can
be recorded and played back. This is somewhat complicated: As the electrical
current varies back and forth as an analog of the sound waves, the peaks it
hits represent the waveform’s amplitude. What we perceive as the intensity
of the sound is proportional to twice the amplitude. A bel (which is three-
quarters of Alexander Graham Bell’s last name) is a tenfold increase in in-
tensity; a decibel is one-tenth of a bel. One decibel represents approximately
the smallest increase in loudness that a person can perceive.

It turns out that the use of 16 bits per sample allows a dynamic range of
96 decibels, which is approximately the difference between the threshold of
hearing (below which we can’t hear anything) and the threshold of pain. The
compact disk uses 16 bits per sample.

So for each second of sound, a compact disk contains 44,100 samples
of 2 bytes each. But you probably want stereo as well. So double that for

378 Chapter Twenty-Five

a total of 176,400 bytes per second. That’s 10,584,000 bytes per minute of
sound. (Now you know why digital recording of sound wasn’t common
before the 1980s.) The full 74 minutes of stereo sound on the CD requires
783,216,000 bytes.

Digitized sound has many well-known advantages over analog sound. In
particular, whenever analog sound is copied (for example, when a phono-
graph record is created from a master recording tape) some fidelity is lost.
Digitized sound is numbers, however, and numbers can always be faithfully
transcribed and copied. It used to be that the longer a telephone signal had
to travel in a wire, the worse it would sound. This is no longer the case.
Because much of the telephone system is now digital, calls from across the
country sound as clear as those from across the street.

CDs can store data as well as sound. When used exclusively for data,
they’re called CD-ROM (CD Read-Only Memory). A CD-ROM is gener-
ally limited to about 660 megabytes. Most computers these days have CD-
ROM drives installed, and much application and game software is distributed
on CD-ROM.

The introduction of sound, music, and video into the personal computer
was known as multimedia just a decade ago and is now so common that it
doesn’t need a special name. Most home computers sold these days have a
sound board that includes an ADC for digitally recording sound through a
microphone and a DAC for playing back recorded sound through speakers.
Sounds can be stored on a disk in waveform files.

Because you don’t always need CD quality sound when recording and
playing back sound on home computers, the Macintosh and Windows of-
fer lower sampling rates, specifically 22,050 Hz, 11,025 Hz, and 8000 Hz;
a lower sample size of 8 bits; and monophonic recording. Sound can be re-
corded using as few as 8000 bytes per second, which is 480,000 bytes per
minute.

Everybody knows from science fiction movies and television shows that
computers of the future converse with their users in spoken English. Once
a computer is equipped with hardware to digitally record and play back
sound, everything else involved in this goal is a software problem.

There are a couple of ways that computers can be made to talk in recog-
nizable words and sentences. One approach is to have a human being record
sentence fragments, phrases, words, and numbers that can then be stored
in files and strung together in different ways. This approach is often used
for information systems accessed over the telephone, and it works fine when
there are only a limited number of combinations of words and numbers that
must be played back.

A more general form of voice synthesis involves a process that converts
arbitrary ASCII text to waveform data. Because English spelling, for example,
isn’t always consistent, such a software system uses a dictionary or complex
algorithms to determine the actual pronunciation of words. Basic vocal sounds
(called phonemes) are combined to form whole words. Often the software
must make other adjustments. For example, if a sentence is followed by a
question mark, the sound of the last word must be increased in frequency.

The Graphical Revolution 379

Voice recognition—the conversion of waveform data to ASCII text—is
a much more complex problem. Indeed, many humans have problems un-
derstanding regional variations in spoken language. While dictation software
for the personal computer is available, it usually requires some training so
that it can reasonably transcribe what a particular person is saying. Far
beyond the conversion to ASCII text is the problem of programming the
computer so that it actually “understands” what is said. Such a problem is
in the realm of the field of artificial intelligence.

The sound boards in today’s computers are also supplied with small elec-
tronic music synthesizers that can imitate the sounds of 128 different mu-
sical instruments and 47 different percussion instruments. These are referred
to as MIDI (pronounced middy) synthesizers. MIDI is the Musical Instru-
ment Digital Interface, a specification developed in the early 1980s by a
consortium of manufacturers of electronic music synthesizers to connect these
electronic instruments to one another and to computers.

Various types of MIDI synthesizers use a variety of methods for synthe-
sizing instrument sounds, some of which are more realistic than others. The
overall quality of a particular MIDI synthesizer is quite outside the province
of the MIDI specification. All that’s required is that the synthesizer respond
to short messages—usually 1, 2, or 3 bytes in length—by playing sounds.
MIDI messages mostly indicate what instrument is desired, that a particular
note should begin playing, or that a note currently playing should stop
playing.

A MIDI file is a collection of MIDI messages with timing information.
A MIDI file usually contains an entire musical composition that can be played
back on the computer’s MIDI synthesizer. A MIDI file is usually much smaller
than a waveform file containing the same music. In terms of relative size, if
a waveform file is like a bitmap file, a MIDI file is like a vector graphics
metafile. The downside is that the music encoded in a MIDI file could sound
great on one MIDI synthesizer and quite horrid on another.

Another feature of multimedia is digitized movies. The apparent motion
of movie and television images is achieved by quickly displaying a sequence
of individual still images. These individual images are called frames. Mov-
ies proceed at the rate of 24 frames per second, North American television
at 30 frames per second, and television in most other places in the world at
25 frames per second.

A movie file on a computer is simply a series of bitmaps with sound. But
without compression, a movie file requires a huge amount of data. For ex-
ample, consider a movie with each frame the size of a 640-by-480-pixel
computer screen with 24-bit color. That’s 921,600 bytes per frame. At 30
frames per second, we’re up to 27,648,000 bytes per second. Keep multi-
plying and you get 1,658,880,000 bytes per minute, and 199,065,600,000
bytes—just about 200 gigabytes—for a two-hour movie. This is why most
movies displayed on the personal computer are short, small, and jumpy.

Just as JPEG compression is used to reduce the amount of data required
to store still images, MPEG compression is used for movies. MPEG (pro-
nounced em peg) stands for Moving Pictures Expert Group. Compression

380 Chapter Twenty-Five

techniques for moving images take advantage of the fact that a particular
frame usually contains much information that’s duplicated from the previ-
ous frame.

There are different MPEG standards for different media. MPEG-2 is for
high-definition television (HDTV) and for digital video discs (DVDs), also
called digital versatile discs. DVDs are the same size as CDs, but they can
be recorded on both sides and in two layers per side. On DVDs, video is
compressed by a factor of about 50, so a two-hour movie requires only 4
gigabytes, which can fit on one layer of one side. The use of both layers and
both sides increases the capacity of DVDs to about 16 gigabytes, which is
about 25 times the capacity of a CD. It’s expected that DVD-ROM will
eventually replace CD-ROM for the distribution of software.

Are CD-ROM and DVD-ROM the modern day realization of Vannevar
Bush’s Memex? He originally conceived of Memex as using microfilm, but
CD-ROM and DVD-ROM make much more sense for such a device. Elec-
tronic media have an advantage over physical media by being easily search-
able. Unfortunately, few people have simultaneous access to multiple CD or
DVD drives. The closest that we’ve come to Bush’s concept doesn’t involve
storing all the information you’ll need at your desk. It involves interconnect-
ing computers to give them the ability to share information and use storage
much more efficiently.

The first person to publicly operate a computer from a remote location
was George Stibitz, the same man who designed the Bell Labs relay computer
in the 1930s. The remote operation of a relay computer occurred at a dem-
onstration at Dartmouth in 1940.

The telephone system is built to transmit sound, not bits, over wires. Send-
ing bits over telephone wires requires that the bits be converted to sound and
then back again. A continuous sound wave of a single frequency and a single
amplitude (called a carrier) doesn’t convey any substantial information at
all. But change something about that sound wave—in other words, modu-
late that sound wave between two different states—and you can represent
0s and 1s. The conversion between bits and sound occurs in a device called
the modem (which stands for modulator/demodulator). The modem is a form
of serial interface because the individual bits in a byte are sent one after
another rather than all at once. (Printers are often connected to computers
with a parallel interface: Eight wires allow an entire byte to be transmitted
at the same time.)

In early modems, a technique called frequency-shift keying (FSK) was
used. A modem operating at 300 bits per second (for example) might con-
vert a 0 bit to a frequency of 1070 Hz and a 1 bit to a frequency of 1270 Hz.
Each byte is prefaced by a start bit and concluded with a stop bit, so each
byte requires 10 bits. At 300 bits per second, the transmission speed is only
30 bytes per second. More modern modems use more sophisticated tech-
niques to achieve speeds over 100 times that.

An early home computer enthusiast could set up a computer and a mo-
dem as a bulletin board system (BBS), to which other computers could call
in and download files, which means transferring files from a remote computer

The Graphical Revolution 381

to one’s own computer. This concept was extended into large information
services such as CompuServe. In most cases, communication was entirely in
the form of ASCII text.

The Internet is qualitatively different from these early efforts because it’s
decentralized. The Internet really exists as a collection of protocols for com-
puters to talk to one another. Of major importance is TCP/IP, which con-
sists of the Transmission Control Protocol and the Internet Protocol. Rather
than just sending ASCII characters through the wires, TCP/IP-based trans-
mitters divide larger blocks of data into smaller packets, which are sent sepa-
rately over the transmission line (often a telephone line) and reassembled on
the other end.

The popular graphical part of the Internet is the World Wide Web, which
makes use of HTTP, the Hypertext Transfer Protocol. The actual data viewed
on Web pages is defined by a text format called HTML, or Hypertext Markup
Language. The hypertext part of these names is a word used to describe the
linking of associated information, much like that proposed by Vannevar Bush
for the Memex. An HTML file can contain links to other Web pages that
can be easily invoked.

HTML is similar to the Rich Text Format that I described earlier, in that
it contains ASCII text with formatting information. HTML also allows ref-
erencing pictures in the form of GIF files, PNG (Portable Network Graph-
ics) files, and JFIF (JPEG File Interchange Format) files. Most World Wide
Web browsers allow you to look at the HTML files, which is an advantage
of their text format. Another advantage of defining HTML as a text file is
that it’s more easily searchable. Despite its name, HTML isn’t really a pro-
gramming language such as we’ve explored in Chapters 19 and 24. The Web
browser reads the HTML file and formats the text and graphics accordingly.

It’s sometimes helpful if some special program code runs while you are
viewing and working with particular Web pages. Such code can run on either
the server (which is the computer on which the original Web pages are stored)
or the client, which is your computer. On the server side, usually all nec-
essary work (such as interpreting online forms that a client fills out) can
be handled with Common Gateway Interface (CGI) scripts. On the client
side, HTML files can contain a simple programming language known as
JavaScript. Your Web browser interprets the JavaScript statements just as
it interprets HTML text.

Why can’t a Web site simply provide an executable program that can
run on your computer? Well, for one thing, what is your computer? If it’s
a Macintosh, it needs an executable that contains PowerPC machine code
and uses the Mac OS API. A PC-compatible needs an executable that con-
tains Intel Pentium machine code and probably uses the Windows API. But
there are other computers and other graphical operating systems as well.
Moreover, you don’t want to be indiscriminately downloading executable
files. They could originate from an untrustworthy source and might be
malicious in some way.

An answer to these problems was provided by Sun Microsystems in the
language Java (not to be confused with JavaScript). Java is a full-fledged

382 Chapter Twenty-Five

object-oriented programming language much like C++. In the preceding
chapter, I explained the difference between compiled languages (which re-
sult in an executable that contains machine code), and interpreted languages
(which don’t). Java is somewhere in between. Java programs must be com-
piled, but the result of the compilation usually isn’t machine code. It’s instead
Java byte codes. These are similar in structure to machine code, but they’re for
an imaginary computer called the Java virtual machine (JVM). A computer
running the compiled Java program emulates the JVM by interpreting the
Java byte codes. The Java program uses whatever graphical operating sys-
tem is on the machine, thus allowing platform-independent programming.

While much of this book has focused on using electricity to send signals
and information through a wire, a more efficient medium is light transmit-
ted through optical fiber—thin tubes made of glass or polymer that guide
the light around corners. Light passing through such optical fibers can
achieve data transmission rates in the gigahertz region—some billion of bits
per second.

So it seems that photons, not electrons, will be responsible for delivering
much of the information of the future into our homes and offices; they’ll be
like faster dots and dashes of Morse code and those careful pulses of blink-
ing light we once used to communicate late-night wisdom to our best friend
across the way.

383

� Acknowledgments �

Code was conceived in 1987. It rattled around in my head for nearly a decade
and was finally committed to a Microsoft Word file between January 1996
and July 1999. I offer many thanks:

to the readers of early drafts of Code who contributed comments, criti-
cisms, and suggestions: Sheryl Canter, Jan Eastlund, Peter Goldeman, Lynn
Magalska, and Deirdre Sinnott;

to my agent, Claudette Moore of Moore Literary Agency, and to everyone
at Microsoft Press who helped make Code a reality, particularly those whose
names are listed on the copyright page of this book and on the colophon,
following the index;

to my mother, who never held me back;
to Little Cat, who shared my apartment with me from 1982 through May

1999, and who inspired many cat references in my writing;
to Web sites such as Bibliofind (www.bibliofind.com) and Advanced Book

Exchange (www.abebooks.com) that offer convenient access to used books,
and to the staff of the Science, Industry, and Business Library (SIBL) branch
of the New York Public Library (www.nypl.org);

to my friends in the rooms, without whose support none of this would
be possible;

and again to Deirdre, my ideal reader and so much more.

Charles Petzold
July 15, 1999

� Bibliography �

An annotated bibliography for this book is available on the World Wide Web
site www.charlespetzold.com /code.

385

Note: Page numbers in italics refer to illustrations.

� Index �

Numbers
6800 microprocessor, 260–61, 281–83,

284
8080 microprocessor, 260–83, 284

A
abacus, 238
accumulator, 208, 211–13, 215, 232,

264, 268, 270–72, 282–83, 321
adding machines, 131–42, 148–49,

194, 207–8
Aiken, Howard, 243, 354
ALGOL programming language,

354–60, 362, 363
algorithms, 50, 236, 354–63
al-Khwarizmi, Muhammed

ibn-Musa, 50
Allen, Paul, 362
Altair, 283–84, 302, 304, 362
ALU (Arithmetic Logic Unit), 232, 269
Ampère, André Marie, 28
analog computers, 231
Analytical Engine, 101, 240, 241, 362
API (application programming

interface), 330–32, 371, 373, 381
Apple Computer

Apple II, 284, 366, 372

Apple Computer, continued
Apple Lisa, 370
Macintosh, 285, 334, 370, 372–73,

375, 378, 381
argument, 233
Aristotle, 86, 87, 91
Arithmetic Logic Unit (ALU). See ALU

(Arithmetic Logic Unit)
Art of Computer Programming series

(Knuth), 360
ASCII (American Standard Code

for Information Interchange),
286–300, 311–13, 315

high-level programming language
and, 351, 356–57, 365–67, 373,
378–79, 381

operating systems and, 320–21,
323–24, 327–31

assembly language, 236
associative law, 88–89, 92, 103
“As We May Think” (Bush),

364–65, 369
AT&T (American Telephone and

Telegraph), 246, 248, 333. See
also Bell Telephone Laboratories

Atanasoff, John V., 244
automation, 206–37

386 Code

B
Babbage, Charles, 101, 240, 240,

241, 362
bandwidth, 310
Barbier, Charles, 16, 101, 240–42
Bardeen, John, 247
base two logarithm, 76
BASIC, 361–62
Baudot code, 288–90, 295
Baudot, Emile, 288
BCD (binary-coded decimal), 271, 292,

296–97, 338
Bell, Alexander Graham, 248, 377
Bell Systems Technical Journal, 246
Bell Telephone Laboratories, 243,

246–47, 249, 333, 362, 373,
377, 380. See also AT&T
(American Telephone and
Telegraph)

big-endian method, 283
binary-coded decimal (BCD). See BCD

(binary-coded decimal)
binary (base two) number system,

61–85, 182
adding machines and, 131–43
automation and, 208
bytes and, 181
conversion to/from, 184–85
flip-flops and, 177
signed/unsigned numbers in, 154
switches and, 95–96

bits (binary digits). See also bytes
carry, 136
least-significant (rightmost),

141, 142
logic gates and, 104
most-significant (leftmost), 141
origin of the term, 67–68
overview of, 69–85
photographic film and, 76–79, 88
sign, 153
sum, 136
use of the term, by Shannon,

103, 246

Boole, George, 87, 87, 95, 101, 129–30,
359. See also Boolean algebra

Boolean algebra, 87–103, 130,
246, 269–70, 359–60, 363. See
also Boole, George

Braille, 5, 31, 242, 287. See also
Braille, Louis

basic description of, 14–21
binary digits and, comparison of, 70
simplicity of, in comparison to

Morse code, 85
Braille, Louis, 15, 15, 16, 18.

See also Braille
Brattain, Walter, 247
Bricklin, Dan, 366
British Broadcasting Corporation, 7
buffers, 128–29
bugs, 236, 274, 275
Burks, Arthur W., 245
bus, 301–19
Bush, Vannevar, 364, 369, 380
Busicom, 258
Byron, Augusta Ada, 240, 362
bytes, 180–89. See also bits (binary

digits)
definition of, 180
high-order (leftmost), 216–17
low-order (rightmost), 216,

217, 222

C
C programming language, 362–63
calculators, 188, 231, 239
Carroll, Lewis (Charles Dodgson), 86
cathode-ray tubes (CRTs). See CRTs

(cathode-ray tubes)
CD-ROM (CD Read-Only Memory),

378, 380
CDs (compact discs). See compact

discs (CDs)
Census data, 241–42
character sets, 286–300. See also ASCII

(American Standard Code for
Information Interchange)

Index 387

chip, 250–59
clocks, 209, 222, 263. See also

oscillators
flip-flops and, 158, 166–68, 170–78
memory and, 191–92
speed of, 258, 259, 261

closed architecture, 303
CMOS (complementary metal-oxide

semiconductor), 251, 256
COBOL, 361
coincidence (equivalence) gate, 136
Colossus computer, 244
comments, 235–36
common connections, 34, 36
commutative rule, 88, 89
compact discs (CDs), 43, 376–78, 380
complementary metal-oxide

semiconductor. See CMOS
(complementary metal-oxide
semiconductor)

compression, 375–76, 379–80
computability, concept of, 244, 258
conditional jumps, 228
conductors, 28, 35, 38, 39
Constitution of the United States,

40, 241
contacts, electrical, 34–35
control signals, 214–15
counters, 177–78, 232
CPUs (central processing units). See

microprocessors
CRTs (cathode-ray tubes), 309–15,

320, 365, 368–70
current, 28–29
cybernetics, 246
cyberspace, 246

D
Daguerre, Louis, 40
daguerreotypes, 40
data paths, 180
De Morgan, Augustus, 129–30

De Morgan’s Laws, 129–30
decimal (base ten) number system,

47–53, 336–37
adding machines and, 132
alternatives to, 54–68
bits and, 69–70
bytes and, 181
conversion to/from, 184–89
flip-flops and, 177
floating-point numbers and, 341
hexadecimal number system and,

184–89
subtraction and, 147

decoders, 121–22, 129, 197–200
Dickson, William, 314
Difference Engine, 101, 240
digital data, 231
Digital Equipment Corporation, 354
Dodgson, Charles (Lewis Carroll), 86
DRAM (dynamic random access

memory), 308–9
Dummer, Geoffrey, 250
dynamic random access memory

(DRAM). See DRAM (dynamic
random access memory)

E
EBCDIC character code, 295–97, 356
Ebert, Roger, 73–74, 96
Eccles, William Henry, 161
Eckert, J. Presper, 244, 246
Eckert-Mauchly Computer

Corporation, 246
Edison, Thomas, 30, 314, 375
EDVAC (Electronic Discrete Variable

Automatic Computer), 245
electromagnets, 41, 44–46, 156–57,

317
logic gates and, 106, 108–10
memory and, 205

electrons, 23, 27–29, 33–34, 37
Engelbart, Douglas, 369, 370

388 Code

ENIAC (Electronic Numerical
Integrator and Computer),
244, 245

error checking, 81, 82–83
escape code, 21
even parity, 81
expansion slots, 302

F
Fairchild Semiconductor Corporation,

250
feedback, 155–79
Feynman, Richard, 360
file systems, 325, 333
film critics, 73–75, 85, 96
fixed-point numbers, 335–48
Fleming, John Ambrose, 243
flip-flops, 155–79, 249–50

automation and, 207, 226
chips and, 254–55
edge-triggered, 170–73, 178–79,

226–27
level-triggered, 166, 170, 173, 191
memory and, 191

floating-point numbers, 335–38
floppy disks, 318
foreign languages, 47, 181, 298, 300
Forest, Lee de, 243
Formal Logic (De Morgan), 129
FORTRAN, 354, 360, 361
French Telegraph Service, 288
frequency dividers, 175–76
function tables, 162, 169

G
Gates, Bill, 102, 362
Gibson, William, 246
gigabyte, 202
GNU project, 334
Goldstine, Herman H., 245

Goto instruction, 226
graphical user interface (GUI). See GUI

(graphical user interface)
ground, use of the term, 34–35
guard patterns, 80–81
GUI (graphical user interface), 370, 371
Gunter, Edmund, 239

H
hard disks, 318–19
hardware, use of the term, 232
Harvard Mark I/II computers, 243
Haüy, Valentin, 16, 42
Hertz, Heinrich Rudolph, 159, 175, 310
hexadecimal (base 16) number system,

183–89, 234, 288–97, 321, 349
high-level programming language,

349–63
Hindu-Arabic (Indo-Arabic) number

system, 50–53
Hoff, Ted, 258
Hollerith, Herman, 241, 241
Hollerith cards, 241–42
Hopper, Grace Murray, 243, 354

I
IBM (International Business Machines),

180–81, 242, 246, 261, 284–85,
332–33

ASCII and, 295
floating-point hardware and, 247
high-level programming language

and, 361–62, 366–67, 371–72
peripheral devices and, 303–4, 314,

317–18
punch cards, 295–97, 295, 317, 361
video displays and, 366–67

IC (integrated circuit), 250–59, 301.
See also chip

Index 389

information
as a choice among two or more

possibilities, 72–73
retention of, through flip-flop

circuits, 161
theory, 246

initialization code, 323
input devices, 105, 231, 261–62
integrated circuit (IC). See chip; IC

(integrated circuit)
Intel, 258–61, 284, 303, 309, 320, 327,

332, 348
International Telecommunication

Union (ITU), 288
interrupts, 280–81, 332
inverters, 119, 129, 149–50, 157

automation and, 215–16
memory and, 195

ITU (International Telecommunication
Union). See International
Telecommunication Union (ITU)

J
Jacquard, Joseph Marie, 239
Jacquard loom, 239–41
Java, 381–82
Jobs, Steven, 284, 370
Jordan, F. W., 161

K
Kemeny, John, 361
Keuffel & Esser Company, 239
keyboard, 315–17, 322–24, 349, 369
Kilby, Jack, 250
Kildall, Gary, 326
kilobytes, 201–3
kinetograph devices, 314
Knuth, Donald, 360
Kurtz, Thomas, 361

L
labels, 234–35
language

foreign, 47, 181, 298, 300
high-level programming, 349–63
machine (machine code), 232, 236,

321, 349–63
speech and, 5
use of the term, 232

last-in-first-out (LIFO) storage. See
LIFO (last-in-first-out) storage

Law of Contradiction, 91
Laws of Thought, The (Boole), 101
Leibniz, Gottfried Wilhelm von, 87, 239
LIFO (last-in-first-out) storage, 273
Linux, 334
little-endian method, 283
logarithms, 76, 231, 236, 238–40,

340, 346–47
logic, 85, 86–101, 285. See also

logic gates
character sets and, 295
tables, 194–95, 197

logic gates, 102–30, 214, 307–8
binary addition and, 134–38
chips and, 252–55
flip-flops and, 159–64, 167, 169
memory and, 191, 195, 197, 205
semiconductors and, 249
subtraction and, 148, 150, 151
vacuum tubes and, 243–44, 249

Longfellow, Henry Wadsworth, 70–72
Lowell, Amy, 312

M
machine code (machine language), 232,

236, 321, 349–63
magnetic storage, 317–18
Maltin, Leonard, 74–75
Marquez, Gabriel Garcia, 5
Mathematical Analysis of Logic, The

(Boole), 129

390 Code

“Mathematical Theory of
Communication, A”
(Shannon), 246

Mauchly, John, 244
McCarthy, John, 363
Memex, 364, 380
memory, 190–205, 243, 355–56. See also

RAM (random access memory)
1-bit, 167
basic description of, 231
high-level programming language

and, 349
magnetic core, 245
mercury delay line, 245
microprocessors and, 261–85
operating systems and, 320, 321
peripheral devices and, 319
storage and, difference between, 319

memory-mapped I/O, 280
microprocessors, 231–32, 246–48. See

also 6800 microprocessor; 8080
microprocessor

high-level programming language
and, 349–50, 352

invention of, 250–59
memory and, 261–85
operating systems and, 320
peripheral devices and, 302, 303,

305, 317
single-chip, 261
two classic, 260–85

Microsoft Corporation, 102, 362
MS-DOS operating system, 332,

333, 354–55, 365, 371, 372
Windows operating system, 334,

372–73, 378
MIT (Massachusetts Institute of

Technology), 103, 333, 364, 367
mnemonics, 232–33, 264, 267, 349
Moore, Gordon E., 251, 258. See also

Moore’s Law
Moore’s Law, 251, 285, 309

Morse, Samuel, 9, 15, 40, 40, 42, 44,
101, 240. See also Morse code

Morse code, 1–14, 31–32, 40–46, 382.
See also Morse, Samuel

binary digits and, comparison of, 70
character sets and, 287, 289
invention of, 9–10
telegraph system and, 33–39
UPC codes and, 80, 83–85

MOS Technology, 284
motherboard, 302
Motorola, 259–60, 281, 283, 285,

348, 370
MS-DOS (Microsoft Disk Operating

System), 332, 333, 354–55, 365,
371, 372

Multics, 333
multitasking, 334
Murray code, 288
Murray, Donald, 288

N
nanoseconds, 253
Napier, John, 238, 239
Napier’s Bones, 239
National Semiconductor, 260
negation, 146
negative transition, 173
networks, 103, 104
Neumann, John von, 245, 245, 246,

363, 367, 372
neutrons, 23–24
Newton, Isaac, 87
nibble, definition of, 181
nines’ complement, 144–45
Nobel Prize, 247
noise, 72
Noyce, Robert, 250, 253, 258
NPN transistors, 248
number systems, 47–70, 335–48. See

also specific number systems
Nyquist, Harry, 377

Index 391

O
OCR (optical character recognition),

80, 376
octal (base eight) number system,

55–60, 63, 181–82
odd parity, 81
Ohm, Georg Simon, 29
Ohm’s Law, 39
One Hundred Years of Solitude

(Marquez), 5
ones’ complement, 146, 150–51, 154
opcodes, 213, 215, 217–19, 263–64,

270–72, 276–77, 279–82, 285
open architecture, 303
operands, 87, 92–94
operating systems, 319, 320–34,

370–71
optical character recognition (OCR).

See OCR (optical character
recognition)

Organon (Aristotle), 86
Orlando, Tony, 69, 71
oscillators, 157–59, 173–76, 178, 209,

222, 262
oscilloscope, 367
Oughtred, William, 239
output devices, 105, 231, 261–62

P
parity, 81
Pascal, Blaise, 239
Pascal programming language, 362
Paterson, Tim, 332
Pentium microprocessors, 284–85, 348.

See also microprocessors
petabyte, 202
Pfleumer, Fritz, 317
phonograph, 376
photographic film, 76–79, 85
pixels, 311–13, 367–68, 370
Polonius, 144
pop, 273

positional number systems, 50
Poulsen, Valdemar, 317
“Preliminary Discussion of the Logical

Design of an Electronic
Computing Instrument” (Burks,
Goldstine, and Neumann), 245

printing telegraph, 288
protocols, 381
push, 273

Q
quaternary number system, 60–61, 63

R
Radio Shack, 38, 39, 110, 244, 284
RAM (random access memory). See

also memory; RAM arrays
automation and, 208–15, 219,

220–32, 236–37
basic description of, 198–99
microprocessors and, 258, 261, 263,

272–73, 284
operating systems and, 320,

325, 328
peripheral devices and, 301–2,

304–8, 312–13, 314, 317, 319
quantities of, 201–3
as volatile memory, 205

RAM arrays, 199–205, 249, 250, 256.
See also RAM (random access
memory)

automation and, 208–15, 220–27,
231–32, 236–37

microprocessors and, 263, 284
peripheral devices and, 304–5, 308

random access memory (RAM). See
RAM (random access memory)

read-only memory (ROM). See ROM
(read-only memory)

registers, 264–67, 275–79, 282

392 Code

Remington Rand, 246, 317, 354
resistance, 28–30, 37–39
resolution, 311, 314
Revere, Paul, 70–72
Ritchie, Dennis M., 333, 362
ROM (read-only memory), 312–13,

324–25, 332

S
scanning devices, 79–81, 83
Scheutz, Edvard, 241
Scheutz, George, 241
semiconductors, 247–49, 260
Shannon, Claude, 103, 105, 130, 246
Shockley, William, 247, 249
Shockley Semiconductor Laboratories,

249
short circuits, 30
Sieve of Eratosthenes, 359, 360
signed binary numbers, 154
Siskel, Gene, 73–74
Socrates, 86, 91–92
software

engineers, 232
use of the term, 232

solid-state electronics, 248
speaker wire, 38–39
SRAM (static random access memory),

308–9
stable states, 161
stacks, 273–76, 282
static random access memory (SRAM).

See SRAM (static random access
memory)

Stibitz, George, 243, 246, 380
Stroustrup, Bjarne, 373
Sun Microsystems, 381
syllogism, 86, 91
“Symbolic Analysis of Replay and

Switching Circuits” (Shannon),
103, 105, 130

synchronicity, 158

T
Tabulating Machine Company, 242
tabulation machines, 241–42
TANSTAAFL principle, 222
tape systems, 317–18
Technical Reference manual (IBM), 303
telegraph systems, 33–46, 101, 105–6,

242. See also Morse code
telephone systems, 72, 75–76, 242, 317
teletypewriters, 288–90
television screens, 310–11, 314
tens’ complement, 152, 153–54
terabyte, 202
Texas Instruments, 250, 251, 257
Thompson, Ken, 333
Torvalds, Linus, 334
transistors, 142, 247–50, 260–61, 285,

305. See also TTL (transistor-
transistor logic)

trigonometry, 231, 236, 239
true/false values, 85–86, 93
TTL (transistor-transistor logic),

251–56, 305, 308. See also
transistors

TTL Data Book for Design Engineers,
251–56

Tukey, John Wilder, 68
Turing, Alan M., 244, 258–59
Turing Test, 244

U
Unicode, 300
UNIVAC (Universal Automatic

Computer), 246, 354
Universal Product Code (UPC). See

UPC (Universal Product Code)
UNIX, 246, 333–34, 362
UPC (Universal Product Code), 79–85

Index 393

V
vacuum tubes, 37–38, 142, 243,

247, 249
variables, 355–56
video displays, 311–15, 321, 324, 332,

334, 349, 366–70, 372
virtual memory, 334
VisiCalc, 366–67
voltage, 27–30, 37–39, 43

flip-flops and, 157, 159
logic gates and, 107–9, 113–14, 120

Volto, Count Alessandro, 28
von Neumann architecture, 245
von Neumann bottleneck, 245

W
Warnock, John, 374
Watson, Thomas J., 242
Watt, James, 31
white space, 234
Wiener, Norbert, 246
Wilson, Flip, 371
Windows (Microsoft). See Microsoft

Corporation, Windows
operating system

Wirth, Niklaus, 362
Wozniak, Stephen, 284
WYSIWYG (What You See Is What

You Get), 371

X
Xerox PARC, 369, 370, 372

Z
Zenith, 251
Zuse, Conrad, 243

� About the Author �

Charles Petzold has been writing
about personal computers and pro-
gramming for more than 15 years,
and his classic book Programming
Windows, now in its fifth edition,
has influenced an entire generation
of programmers. Code shares this
gifted teacher and communicator
with every reader interested in un-
derstanding how computers work—
no matter what their level of
technological savvy. He resides in
New York City.D

on
al

 H
ol

w
ay

� Colophon �

The manuscript for this book was prepared using
Microsoft Word 2000. Pages were composed using
Adobe PageMaker 6.52, with text and display type
in Sabon and math fonts in Syntax. Composed
pages were delivered to the printer as electronic
prepress files.

Dust Jacket and Cover Graphic Designer
Greg Hickman

Interior Book Design
Jimmie Young and Sally Slevin

Illustrator
Joel Panchot

Compositor
Elizabeth Hansford

Principal Proofreader/Copy Editor
Shawn Peck

Indexer
Liz Cunningham

	Cover
	Copyright page

	Contents
	Preface to the Paperback Edition
	code (kod) ...
	Chapter One: Best Friends
	Chapter Two: Codes and Combinations
	Chapter Three: Braille and Binary Codes
	Chapter Four: Anatomy of a Flashlight
	Chapter Five: Seeing Around Corners
	Chapter Six: Telegraphs and Relays
	Chapter Seven: Our Ten Digits
	Chapter Eight: Alternatives to Ten
	Chapter Nine: Bit by Bit by Bit
	Chapter Ten: Logic and Switches
	Chapter Eleven: Gates (Not Bill)
	Chapter Twelve: A Binary Adding Machine
	Chapter Thirteen: But What About Subtraction?
	Chapter Fourteen: Feedback and Flip-Flops
	Chapter Fifteen: Bytes and Hex
	Chapter Sixteen: An Assemblage of Memory
	Chapter Seventeen: Automation
	Chapter Eighteen: From Abaci to Chips
	Chapter Nineteen: Two Classic Microprocessors
	Chapter Twenty: ASCII and a Cast of Characters
	Chapter Twenty-One: Get on the Bus
	Chapter Twenty-Two: The Operating System
	Chapter Twenty-Three: Fixed Point, Floating Point
	Chapter Twenty-Four: Languages High and Low
	Chapter Twenty-Five: The Graphical Revolution
	Acknowledgments
	Bibliography
	Index
	Numbers
	A
	B, C
	D, E
	F, G, H, I
	J, K, L, M
	N
	O, P, Q, R
	S, T, U
	V, W, X, Z

	About the Author
	Colophon

